بررسی مقاومت روانگرایی ماسه رس دار غیراشباع

نویسندگان
1 دانشجوی دکتری خاک و پی، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)
2 مدیر گروه عمرانl
3 عضو هیات علمی گروه عمران، دانشگاه کاشان
چکیده
بیشتر تحقیقات صورت گرفته در خصوص پدیده روانگرایی معطوف به ماسه های تمیز یا ماسه های دارای سیلت در حالت اشباع بوده و ماسه های رس دار به خصوص در حالت غیر اشباع کمتر مورد توجه قرار گرفته است. در این تحقیق کوشیده شده است تا با انجام آزمایشات سه محوری سیکلیک بر روی خاک ماسه ای غیر اشباع با درصدهای مختلف کائولن (0 تا 30 در صد)، مقاومت روانگرایی آن ها ارزیابی شود. آزمایش های آزمایشگاهی با استفاده از سلول سه محوری دو جداره غیر اشباع با قابلیت کنترل مکش در درجه اشباع های 80%، 85%، 90%، 95% ،100% و تراکم نسبی 50% صورت گرفته است. تغییرات مکش در حین بارگذاری مورد بررسی قرار گرفت. نتایج نشان می دهد که با افزایش درصد ریزدانه رسی تا حدود 20%، مقاومت روانگرایی کاهش داشته و با افزایش درصد ریزدانه از این مقدار به 30% مقاومت کمی افزایش می یابدکه این امر در نمونه های اشباع و غیر اشباع قابل مشاهده است. با کاهش درجه اشباع مقاومت روانگرایی در تمامی نمونه ها افزایش می یابد. مقدار این افزایش در ماسه تمیز نسبت به خاک های دارای ریزدانه رسی بیشتر بوده و در واقع با کاهش درجه اشباع، افزایش مقاومت روانگرایی در خاک های دارای ریزدانه رسی نسبت به ماسه تمیز دارای حساسیت کمتری می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of liquefaction resistance of unsaturated clayey sand

نویسندگان English

Reza Sadeghzadegan 1
Seyed Abolhasan Naeini 2
Ali Mirzaii 3
چکیده English

Soil mixtures such as clayey sands, silty sands, or clayey silts are among the categories of common natural soils observed in liquefied sites. The substantial amount of liquefactions discussed in previous contributions appeared to occur in sands containing plastic fines. In saturated soils, a notable amount of experimental studies were performed in past to examine the influence of fine content on the liquefaction potential of sands. In spite to the occurrence of liquefaction in unsaturated zones due to ground motions observed in past, there are few amount of experimental data that relate the potential of liquefaction with degree of saturation, Sr, specifically for soils with high degrees of saturations. In this article, the results of a series of careful laboratory test program is represented to determine the liquefaction behaviour of a sand mixed with a range of kaolinite including zero to 30 perect at elevated saturation conditions. This is experimentally achieved using a double-walled suction controlled triaxial cell specifically developed to conduct cyclic triaxial tests at high degree of saturations that were 80, 85, 90, 95 and 100 percent. The stress-strain behaviour of the soil is represented and compared with respect to the amount existing data available in the literature. The variation of excess pore water pressure during the cyclic loading indicate that, in saturated pure sand, the generation of excess pore water pressure was mainly occurred at higher cycle of loads while, in saturated specimens with 30% clay content, it is observed from the early cycle of loading stage. Also a change in suction of specimen during cyclic loading under undrained condition is observed. Due to the presence of air in unsaturated soil volume change occurs during cyclic loading. It can be observed that void ratio decrease while saturation ratio increases. Matric suction is almost constant during cyclic loading until pore air pressure reached at maximum value and by increasing pore water pressure matric suction decrease. During cyclic loading axial strain is small until pore water pressure reached the effective confining pressure. In this case sudden increase in axial strain occurs and liquefaction starts. Accordingly, it is seen that during the cyclic loads all tested specimens reached to the liquefaction state. The liquefaction potential within the soil is represented according to CSR20 and is found to be a function of fine content. It is appeared to be initially decreased within the increment of fine content up to 20%, and consequently, it is slightly increased with increasing the percentage of fines up to 30 percent. The above behaviour aspect was obvious in all the range of degree of saturation considered. Additionally, it is seen that at a given fine content, a slight desaturation of specimens caused a significant increment in the liquefaction resistance ratio (LRR) within the soil and was more evident within the decrement of the fine content. The trend observed for the variation of liquefaction resistance ratio versus the potential volumetric strains in pure sands appeared to be consistent to the logarithmic relationship as suggested in the literature.

کلیدواژه‌ها English

Liquefaction
Unsaturated Sand
Fine content
Degree of Saturation
Cyclic Triaxial Test
[1] Miura S., Yagi K. & Kawamura S. 1995 Liquefaction damage of sandy and volcanic grounds in the 1993 Hokkaido Nansei-Oki earthquake. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil dynamics.
[2] Tohno I. & Yasuda S. 1987 Liquefaction of the Ground During the 1978 Miyagiken-Oki earthquake. Soils and Foundations, 21(3), 18-34.
[3] Koester J. P. 1994 The Influence of Fine Type and Content On Cyclic Strength, Ground Failures Under Seismic Conditions. ASCE Geotechnical Special Publication, 44, 17-33.
[4] Kuwano J., Iimura H., Nakazawa H. & Sugihara K. 1995 Liquefaction strength of sand containing kaolin. 50th Japan Society of Civil Engineers Annual Meeting, 506-507.
[5] Boulanger R. & Idriss I. 2004 Evaluating the potential for liquefaction or cyclic failure of silts and clays. Report No. UCD/CDM–04/01, Center for Geotechnical Modeling.
[6] Chang W. J. & Hong M. L. 2008 Effects of clay content on liquefaction characteristics of gap-graded clayey sands. Soils and Foundations, 48(1), 101–114
[7] Kim U., Kim D. & Zhuang L. 2016 Influence of fines content on the undrained cyclic shear strength of sand–clay mixtures. Soil Dynamics and Earthquake Engineering, 83, 124-134.
[8] Konagai K., Johannson J., Mayorca P., Yamamoto T., Miyajima M., Uzuoka R., Pulido E. N., Duran F. C., Sassa K. & Fukuoka H. 2004 Las Colinas landslide caused by the January 13, 2001 off the coast of El Salvador earthquake, Journal of Japan Association for Earthquake Engineering, 2(1), 1–15.
[9] Uzuoka R., Sento N., Kazama M. & Unno T.  2005 Landslides during the earthquakes on May 26 and July 26, 2003 in Miyagi. Soils and Foundations45(4), 149–163.
[10] Grozic J. L., Robertson P. K. & Morgenstern N.  R. 2000 Cyclic liquefaction of loose gassy sand. Canadian Geotechnical Journal37(4), 843-856.
[11] Bouferra R., Benseddiq N. & Shahrour I. 2007 Saturation and preloading effects on the cyclic
Behavior of sand.International journal of geomechanics, 7(5), 396-401.
[12] Okamura M., Ishihara M. & Tamura K. 2006 Degree of saturation and liquefaction resistances
of sand improved with sand compaction pile. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 258-264.
[13] Kayen R., Moss R. E. S., Thompson E. M., Seed R. B., Cetin K. O., Kiureghian A. D., Tanaka Y. & Tokimatsu K. 2013 Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering139(3), 407-419.
[14] Yoshimi Y., Tanaka K. and Tokimatsu K. 1989 Liquefaction resistance of a partially saturated
Sand. Soils and Foundations, 29(3), 157-162.
[15] Goto S. & Shamoto Y. 2002 Estimation method for the liquefaction strength of unsaturated
sandy soil. Proc., 37th Jpn. Nat. Conf. Geotech. Engrg.
[16] Unno T., Kazama M., Uzuoka R. & Sento N. 2008 Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton. Soils and Foundations, 48(1), 87-99.
[17] Wang H. & Koseki J. 2013 Liquefaction resistance of unsaturated Inagi sand. JSCE 15th Int.
Summer Symp.
[18] Naeini S. A. & Baziar M. H. 2004 Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dynamics and Earthquake Engineering, 24(3), 181–187.
[19] Thevanayagam S. & Martin G. R. 2002 Liquefaction in silty soils screening and remediation issues. Soil Dynamics and Earthquake Engineering22(9), 1035–1042.
[20] Bahadori H., Ghalandarzadeh A. & Towhata I.  2008 Effect of non plastic silt on the anisotropic behaviour of sand. Soils and Foundations, 48(4), 531-546.
[21] Derakhshandi M., Rathje E. M., Hazirbaba K. & Mirhosseini S. M. 2008 The effect of plastic fines on the pore pressure generation characteristics of saturated sands. Soil Dynamics and Earthquake Engineering, 28(5), 376-386.
[22] Okamura M. & Soga Y. 2006 Effects of pore fluid compressibility on liquefaction resistance of
partially saturated sand. Soils and Foundations, 46(5), 695-700.
[23] Ishihara K. 1996 Soil behaviour in earthquake geotechnics. Oxford Un. Press: Oxford, UK.
[24] Bray J. & Sancio R. 2006 Assessment of the liquefaction susceptibility of fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(9), 1165–1177.
[25] Wang H. & Koseki J. 2013 Liquefaction resistance of unsaturated Inagi sand.  JSCE 15th Int. Summer Symp.
[26] Mendes J, Toll D. G. & Evans F. 2012 A Double Cell Triaxial System for Unsaturated Soils Testing. In Unsaturated soils: Research and applications (pp. 5-10). Springer, Berlin, Heidelberg.
[27] Yin J. 2003 A Double Cell Triaxial System for Continuous Measurement of Volume Changes of an Unsaturated or Saturated Soil Specimen in Triaxial Testing. Geotechnical Testing Journal, 26(3), 353-358.
[28] Okamura M. & Noguchi K. 2009 Liquefaction resistance of unsaturated non-plastic silt, Soil and Foundations, 49(2), 221-229.
[29] ASTM D5311 / D5311M-13, 2013 Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil, ASTM International, West Conshohocken, PA.