مدل تحلیلی برنامه‌ریزی تولید سفر در شبکه حمل و نقل پس از بحران زلزله

نویسندگان
1 دانشگاه خواجه نصیرالدین طوسی
2 هیات علمی دانشگاه خواجه نصیر
چکیده
با توجه به اثرات خاص وقوع بحران بر تقاضای سفر، نظیر هجوم تقاضا به شبکه در دوره زمانی کوتاه و رفتار آشوبناک استفاده‌کنندگان شبکه حمل‌و‌نقل، بررسی مسأله تقاضای سفر پس از بحران امری ضروری به نظر می‌رسد. در این مطالعه بررسی شده است که سفرها بلافاصله پس از وقوع زلزله با چه اهدافی خواهد بود و چه فاکتورهایی می‌تواند در تصمیم‌گیری افراد برای سفر پس از زلزله مؤثر باشد. عوامل مؤثر بر رفتار ترافیکی افراد تحت 2 سناریو زلزله (شدید، متوسط) با استفاده از مدل لوجیت چندگانه مورد بررسی قرار گرفته است. کاربرد مدل ارائه شده در این تحقیق از نوع توصیفی می‌باشد. سفرها پس از زلزله با 4 هدف امدادرسانی، بازگشتن به خانه، تخلیه اضطراری و نداشتن سفر تعریف شده اند. داده‌های جمع‌آوری‌شده نشان داد در صورت وقوع زلزله شدید 90% از افراد ترجیح می‌دهند به منظور امدادرسانی و یا بازگشت به خانه سفر داشته باشند. در صورت وقوع زلزله متوسط نیز این آمار حدود 35% از افراد خواهد بود که برخلاف انتظار می‌تواند منجر به بحران ترافیکی در شبکه حمل‌و‌نقل گردد. نتایج مدلسازی نشان داد داشتن فرزند و همچنین فاصله زمانی از محل کار به محل امداد از مهمترین عوامل تأثیرگذار بر انتخاب سفر امدادرسانی هستند. بعلاوه متغیر تحصیلات (غیرمرتبط با زلزله) تأثیری در رفتار افراد پس از بحران ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analytical model of trip production in transportation network after disaster

نویسندگان English

maryam zeini 1
ali Edrissi 2
چکیده English

Unexpected events always occur without any alert about where or when they will happen. According to history of earthquake in Tehran, Iran, the probability of a huge earthquake occurrence (about 7 Richter) is high. The Unpredictable human behavior in disasters can affect the performance of the transportation networks. Considering the specific effects of an earthquake on the travel demand (i.e. the influx of travel demand in a short period and chaotic behavior of the users of the transport network), the issue of post-earthquake travel demand needs to be investigated. Since people travel behavior would be quite different from the ordinary situation, this research proposes a method to estimate the demand based upon the interview survey. The goal of this study is to determine the trip purposes immediately after the earthquake and the factors affecting the individuals' decisions on their trip purposes. In most previous literatures, the majority of policies which have been modeled are based on unrealistic assumed demand. Many previous studies have acknowledged that more trip purposes in response to earthquake exist but few, if any, have examined it in-depth. For example, Since an earthquake cannot be predicted, in a study conducted by Chang et al. to estimate the post-earthquake travel demand, it is assumed that people will evacuate directly from their current locations immediately after earthquakes because under the no-notice earthquake scenarios, there is no time or considerably less time for people to return home or go to other places to pick up their relatives or friends [Chang et al. 2012] while most people will return to home to rescue their family [Hara, 2013]. This research developed discrete choice (Multinomial Logit) model to represent effective factors on travel demand behavior after 2 earthquake scenarios (Strong & weak) in a workday, with 4 trip purposes (rescue and Inquiry on Safety, return-to-home, evacuation and no-action). This study investigated on travel behavior after an earthquake, based on a statistical analysis on stated preference (SP) questionnaires which were answered by 364 interviews in Tehran. The survey data indicated that, 90% of people may prefer to make trips in order to return to home or to rescue survivals after a powerful day earthquake The collected data expressed that although, it is not expected to have a problem in transportation network after a weak earthquake, the statistics from this study represented that about 35% of people will travel with different purposes because of their fear and it should be considered that despite a moderate earthquake will not destroy transport infrastructures, heavy traffic congestion will cause an emergency situation in transportation network. The goodness of fit (ρ2 statistic) of the model was obtained 0.425 that is a fairly good indicator for the discrete choice models. The model has also predicted the trip purposes in 67% of the observations correctly. The results of the model show that the most effective factors on destination choice behavior are gender, age, travel time, magnitude of earthquake, house ownership and family number. Also unrelated education to the earthquake is not effective on people travel behavior. Informing people about probable open routs after earthquake in advance would help planners for disaster management.

کلیدواژه‌ها English

Behavior models
Travel demand after disaster
discrete choice models
Logit models
[1] Japan International Cooperation Agency (JICA), Centre for Earthquake and Environmental Studies of Tehran (CEST) 2000 The Study of Seismic Micro zoning of The Greater Tehran Area in The Islamic Republic of Iran, Tehran Municipality, Final Report.
[2] Aksu, D. T., Ozdamar, L. 2014 A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation. Transportation Research Part E, 61, 56–67.
[3] Lee J. B., Zheng Z., Kashfi S., Chia J., and Yi R. 2013 Observation of Bus Ridership in the Aftermath of the 2011 Floods in Southeast Queensland, Australia. 9th Annual International Conference of the International Institute for Infrastructure Renewal and Reconstruction, , Brisbane, Qld. (In Press).
[4] Edrissi A., Poorzahedy H., Nassiri H., Nourinejad M. 2013 A multi-agent optimization formulation of earthquake disaster prevention and management. European Journal of Operational Research, 229, 261–275.
[5] Chang L., Elnashai A.S., Spencer Jr. B.F. 2012 Post-earthquake modelling of transportation networks. Structure and Infrastructure Engineering, 8(10), 893–911.
[6] Hara Y. 2013 Returning-Home Analysis in Tokyo Metropolitan Area at the time of the Great East Japan Earthquake using Twitter Data. Proceedings of the Workshop on Language Processing and Crisis Information, 2013 Asian Federation of Natural Language Processing, Nagoya, Japan, 44–50.
[7] Oshima D., Tanaka, Sh., Oguchi, T. 2012 Evaluation of traffic control policy in disaster case by using traffic simulation model. 19th ITS World Congress, Vienna, Austria, 22-26.
[8] Baker, E. J. 1991 Hurricane Evacuation Behavior. International Journal of Mass Emergencies and Disasters, 6, 287-31.
[9] Liu S., Murray-Tuite P.M., Schweitzer L. 2014 Uniting multi-adult households during emergency evacuation planning. Disasters, 38(3), 587-609.
[10] Solís, D., Thomas, M., Letson, D. 2010 An Empirical Evaluation of the Determinants of Household Hurricane Evacuation Choice. Journal of Development and Agricultural Economics, 2, 188-196.
[11] Bu F.,Xie Q. 2010 Research on Emergency Evacuation Traffic Trip Generation Forecasting Based on Logistic Regression. The National Natural Science Foundation of China, 60275018.
[12] Muttarak R., Pothisiri W. 2013 The role of education on disaster preparedness: case study of 2012 Indian Ocean earthquakes on Thailand’s Andaman Coast. Ecology and Society 18(4): 51.
[13] Walton D., Lamb S., 2009 An experimental investigation of post-earthquake travel behaviors: the effects of severity and initial location. International Journal of Emergency Management, 6(1), 14–32.
[14] Tanaka, Sh. and Kuwahara, M. and Yoshii, T. and Horiguchi, R. and Akahane, H. 2001 Estimation of Travel Demand and Network Simulators to Evaluate Traffic Management Schemes in Disaster, AVENUE (an Advanced & Visual Evaluator for road Networks in Urban arEas), 1-16.
[15] Cochran W. G. 1977 Sampling Techniques. 3rd Edition, John Wiley & Sons.
[16] Ben-Akiva, M., Lerman, S.R. 1985 Discrete choice analysis: Theory and application to travel demand. Cambridge, MA: MIT Press