بررسی آزمایشگاهی مشخصه های تنش و کرنش خاکهای ماسه ای منجمد- مطالعه موردی متروی تبریز

نویسندگان
1 گروه ژئوتکنیک، دانشکده مهندسی عمران، دانشگاه تبریز
2 دانشگاه تبریز
3 گروه ژئوتکنیک، دانشکده فنی، دانشگاه اکستر
4 گروه سازه، دانشکده مهندسی عمران، دانشگاه تبریز
چکیده
امروزه روش‌های بهسازی موقت خاک جزء مهمترین مباحث ژئوتکنیکی به حساب می‌آیند. روش انجماد مصنوعی زمین به منظور سیستم تکیه‌گاه موقتی خاک، یک روش دوست‌دار محیط زیست (بدون ایجاد تغییرات ماندگار در ساختمان خاک و سفره آب زیرزمینی)، اقتصادی، ایمن و قابل استفاده در همه انواع خاک‌ها می‌باشد. در انجماد مصنوعی زمین با پایین آوردن دمای خاک به دماهای زیر صفر، آب منفذی خاک منجمد شده و منجر به بهبود پارامترهای مکانیکی، از جمله افزایش مقاومت برشی خاک می-گردد، بدون این که ماده‌ای شیمیایی وارد خاک کند. در این مطالعه پارامترهای تخلخل، درجه اشباع یخ، سازند و بافت خاک ثابت و دما، تنش محدودکننده و نرخ کرنش به عنوان پارامترهای متغیر در نظر گرفته شده‌اند. نتایج پژوهش حاضر توسط که دستگاه فشاری سه‌محوری انجماد بر روی خاک ماسه‌ای بددانه‌بندی شده بازسازی شده مطابق ساختگاه ایستگاه H خط 2 قطار شهری تبریز انجام شده است، نشان می‌دهد که کاهش دما، افزایش تنش محدودکننده و نرخ کرنش، هر یک به صورت جداگانه منجر به افزایش مقاومت برشی و مدول الاستیسیته خاک ماسه‌ای منجمد می‌گردد. همچنین مطابق نتایج این تحقیق، نمونه‌های ماسه‌ای بددانه‌بندی شده منجمد، رفتار نرم‌شونده از خود نشان می‌دهند و به صورت شکل‌پذیر گسیخته می‌شوند. در تمامی نمودار‌های تنش- کرنش این نوع خاک، یک قله و یک حالت نهایی مشهود است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental investigation of stress and strain characteristics of frozen sandy soils - A case study of Tabriz subway

نویسندگان English

Mahzad Esmaeili-Falak 1
H. Katebi 2
A Javadi 3
S. Rahimi 4
چکیده English

Temporary soil improvement techniques are considered among the most important geotechnical topics. Artificial ground freezing is considered to be eco-friendly, economic, safe and applicable for all types of homogeneous, loose and soft soils. By lowering the soil temperature below zero, the pore water of the soil freezes which leads to improved mechanical properties of soil; it increases the shear and compressive strength of soil, without entering any chemicals into the soil environment. In practice, artificial ground freezing consists of two parts; (i) formation of frozen body before construction or test (active step) and (ii) maintenance of the frozen body during the construction and test procedure (passive step). There are two methods for using artificial ground freezing; (i) open method and (ii) closed method. In the open method, liquid nitrogen is used for cooling. With the evaporation of the liquid nitrogen, the soil freezes and the nitrogen gas is released to the atmosphere. In the closed method, a brine is used which is connected to a refrigeration plant. The brine is circulated until the formation of frozen body. The brine used can be ethylene glycol or calcium chloride. One of the difficulties of studying frozen soils is the absence of triaxial compression apparatus for frozen soils in the national and international markets, because it is an unconventional test apparatus. In this research, a triaxial compresion apparatus was developed for testing of frozen soils in the geotechnical laboratory of the University of Tabriz. This apparatus was placed in a cold and insulated room with minimum heat transfer. The temperature of the room was monitored continuously. This triaxial apparatus for frozen soils was developed using a closed system that is connected to a refrigeration plant.

In this study, void ratio, ice saturation and texture of soil were considered as constant parameters and temperature, confining pressure and strain rate were considered as variable parameters. The soil samples were remolded in the laboratory to represent the in situ soil in the line 2, station H of Tabriz Subway. The in situ soil was poorly graded sand and fully saturated. A special type of mold was designed for this research, that was composed of aluminum material with high heat transfer. The mold was insulated from top and bottom and it was rigid in radial direction. A series of unconsolidated undrained triaxial tests were conducted on samples of the frozen soil using the developed triaxial compression apparatus. The results show that, at constant confining pressure and strain rate, decreasing temperature leads to increase in the shear strength and modulus of elasticity of the soil. Decreasing temperature also results in the yield point of frozen soil occurring at higher strains. Also, at constant temperature and strain rate, increasing the confining pressure increases the shear strength and modulus of elasticity of the soil. At constant temperature and confining pressure, increasing the strain rate leads to a moderate increase in the modulus of elasticity and a significant increase in shear strength of frozen sandy soil. Furthermore, the results show that the poorly graded frozen sandy soil samples tested in this research program show softening behavior. All the stress-strain curves show a peak and a residual state.

کلیدواژه‌ها English

frozen soil
Tabriz subway
Mechanical properties
Geotechnical parameters
stress and strain
[1] Evirgen, B. Onur, M. I., Tuncan, M. & Tuncan, A., "Determination of the freezing effect on unconfined compression strength and permeability of saturated granular soils", 4th Int. Conf. on Geotechnique, Construction material and environment, Brisbane, Australia, 2014. 
[2] Anagnasto, C. A. & Grammatikapoulos, I., "The effect of freezing on the strength of silty- clay- sand mixtures", Electronic Journal of Geotechnical Engineering, Vol. 10, Bund. F, 2005, 1-9.
[3] Ziegler, M., Baier, C. & Aubach, B., "Simplified phase change model for artificially frozen ground subject to water seepage", Proc. 17th Int. Conf. on soil mechanics and geotechnical engineering, Egypt, 2009, 562-565.
[4] Ziegler, M., Schuller, R. & Mottaghy, D., "Numerical simulation of energy consumption of artificial ground freezing applications subject to water seepage", Proc. 18th Int. Conf. on soil mechanics and geotechnical engineering, Paris, France, 2013, 2985-88.
[5] Johansson, T., "Artificial ground freezing in clayey soils", Doctoral thesis, KTH University, Sweden, 2009.
[6] Wang, W., Qi, J., Yu, F. & Liu, F., "A novel modeling of settlement of foundations in permafrost regions", Geomechanics & Engineering, Vol. 10, No. 2, 2016, 225-245.
[7] Arasan, S & Nasirpur, O., "The effect of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loos saturated sand", Geomechanics & Engineering, Vol. 8, No. 3, 2015, 361-375.
[8] Li, S., Lai, Y, Zhang, M. & Zhang, S., "Minimum ground pre-freezing time before excavation of Guangzhou subway tunnel", Cold regions science and technology, Vol. 46, 2006, 181-191.
[9] Lackner, R., Amon, A. & Lagger, H., "Artificial ground freezing of fully saturated soil: Thermal problem", Journal of engineering mechanics, ASCE, Vol. 131, No. 2, 2005, 211-220.
[10] Yuanming, L., Long, J. & Xiaoxiao, C., "Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil", International journal of plasticity, Vol. 25, No. 6, 2009, 1177-1205.
[11] Nishimura, S., Gens, A., Olivella, S. & Jardine, J., "THM- coupled finite element analysis of frozen soil: formulation and application", Geotechnique, Vol. 59, No. 3, 2009, 159-171.
[12] Xu, X., Lai, Y., Dong, Y. & Qi, J., "Laboratory investigation on strength and deformation characteristics of ice-saturated frozen sandy soil", Cold regions science and technology, Vol. 69, No. 1, 2011, 98-104.
[13] Zhou, M., "Computational simulation of soil freezing: Multiphase modeling and strength upscaling", Ph.D. Dissertation, Ruhr University, Bochum, Germany, 2013.
[14] Casini, F., Gens, A., Olivella, S. & Viggiani, G., "Triaxial tests on frozen ground: formulation and modeling", 12th Int. Conf. on computational plasticity: Fundamentals and Applications, Barcelona, Spain, 2013.
[15] Lai, Y., Xu, X. & Qi, J., "An experimental investigation of the mechanical behavior and a hyperplastic constitutive model of frozen loess", International Journal of Engineering Science, Vol. 84, 2014, 29-53.
[16] Vyalov, S., "Rheology of frozen soils", Proc. 1st Int. Conf. on permafrost, National academy of sciences, 1963, 332-339.
[17] Sayles, F. H., "Creep of frozen sands", Technical report 190, U.S. Army cold region research and Engineering laboratory, Hanover, 1968.
[18] Sayles, F. H., "Triaxial and creep tests on frozen Ottawa sand", 2nd Int. Conf. on permafrost, National academy of sciences, 1973, 384-391.
[19] Jones, J. S. & Brown, R. E., "Design of tunnel support system using ground freezing", Engineering Geology, Vol. 13, 1979, 375-395.
[20] Mellor, M. & Cole, D. M., "Deformation and failure of ice under constant stress and constant strain rate", Cold regions science and technology, Vol. 5, No.2, 1982, 201-219.
[21] Jacka, T. H., "The time and strain required for development of minimum strain rate in ice", Cold regions and science technology, Vol. 8, No. 3, 1984, 261-268.
[22] Hivon, E. G. & Sego, D. C., "Strength of frozen saline soils", Canadian Geotechnical Journal, Vol. 32, 1995, 336-354.
[23] Al-Hunaidi, M. O., Chen, P. A., Rainer, J. H. & Tremblay, M., "Shear moduli and damping in frozen and unfrozen clay by resonant column tests", Canadian Geotechnical Journal, Vol. 33, 1996, 510-514.
[24] He, P., Zhu, Y. & Cheng, G., "Constitutive models of frozen soil", Canadian Geotechnical Journal, Vol. 37, 2000, 811-816.
[25] Sheng, Y., Peng, W., Wen, Z. & Fukuda, M., "Physical properties of frozen soils measured using ultrasonic techniques", Permafrost, Philips, Springman & Arenson, 2003, 1035-38.
[26] Colombo, G., Lundardi, P., Cavagna, B., Cassani, G. & Manassero, V., "The artificial ground freezing technique application for the Naples underground", Proc. of World Tunnel congress, Agra, India, 2008, 910- 921.
[27] Yugui, Y., Lai, Y., Dong, Y. & Li, S., "The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures", Cold regions science and technology, Vol. 60, No. 2, 2010, 154-160.
[28] Qi, J., Yao, X., Yu, F. & Liu, Y., "Study on thaw consolidation of permafrost under roadway embankment", Cold regions and science technology, Vol. 81, 2012, 48-54.
[29] Yugui, Y., "Experimental and theoretical investigations on the deformation characteristics of frozen silt in underground engineering", Electronic Journal of Geotechnical Engineering, Vol. 19, Bund. I, 2014, 1883-94.
[30] Liu, J., Peng, L., Cui, Y. & Liu, J., "Experimental study on direct shear behavior of frozen soil- concrete interface", Cold regions science and technology, Vol. 104-105, 2014, 1-6.
[31] Yugui, Y., Feng, G., Lai, Y. & Zhang, X., "Triaxial creep characteristic and fractional order constitutive model of frozen silt", Electronic Journal of Geotechnical Engineering, Vol. 19, Bund. O, 2014, 3757-68.
[32] Frivik, P. E., "State of art report. Ground freezing: Thermal properties, modeling of processes and thermal design", Engineering geology, Vol. 18, 1981, 115-133.
[33] Nguyen, A. D., Sego, C. D., Arenson, U. L. & Biggar, W. K., "The dependence of strength and modulus of frozen saline sand on temperature, strain rate and salinity", 63rd Canadian Geotechnical Conf. in Clagary, Alberta, Canada, 2010, 467-475.
[34] Zhao, X., Zhou, G. & Wang, J., "Deformation and strength behavior of frozen clay with thermal gradient under uniaxial compression", Tunneling and underground space technology, Vol. 38, 2013, 550-558.
[35] Braun, B., Shuster, J. & Burnham, E., "Ground freezing for support of open excavations", Engineering Geology, Vol. 13, 1979, 429-453.
[36] Pimentel, E., Anagnostou, G. & Sres, A., "Large-scale physical model for simulation of artificial ground freezing with seepage flow", Physical modelling in geotechnics, 2010, 379-382.
[37] Re, G. D., Germaine, J. T. & Ladd, C. C., "Triaxial testing of frozen sand, equipment and example results", Cold regions engineering, ASCE, 2003, 90-118.
[38] Shuster, J. A., "Engineering quality assurance for construction ground freezing" Engineering Geology, Vol. 18, 1981, 333-350.
[39] Andersland, O. B. & Ladanyi, B., "Introduction to frozen ground engineering", Chapman & Hall, Springer, 1994.
[40] Johansson, M., "ground freezing of weathered rock in the molleback zone at the Hallandsas project", M.Sc. Thesis, Lulea University, Sweden, 2011.
[41] Heinrich, D., Muller, G. & Voort, H., "Ground freezing monitoring techniques", Engineering Geology, Vol. 13, 1979, 455-471.
[42] Stoss, K. & Valk, J., "Uses and limitations of ground freezing with liquid nitrogen", Engineering Geology, Vol. 13, 1979, 485-494.
[43] Gallavresi, F., "ground freezing- The application of the mixed method (Brine- Liquid nitrogen)", Engineering Geology, Vol. 18, 1981, 361- 375.
[44] ASTM D2850-15(2015), "Standard test method for unconsolidated-undrained triaxial compression test on cohesive soils",  ASTM International, West Conshohocken, Pa, 2015, www.astm.org.
[45] Ting, John M. The Creep of Frozen Sands: Qualitative and Quantitative Models. No. R81-5. Massachusetts inst of Tech Cambridge Dept of civil engineering, 1981. 
[46] ASTM D4083-89(2016), "Standard Practice for Description of Frozen Soils (Visual-Manual Procedure)", ASTM International, West Conshohocken, PA, 2016, www.astm.org