ارزیابی رفتار تنش-کرنش فشاری بتن پودری واکنشی تقویت شده با الیاف فولادی و پلی‌وینیل الکل

نویسندگان
1 هیئت علمی دانشکده فنی و مهندسی- دانشگاه مازندران
2 دانشکده فنی و مهندسی عمران، دانشگاه مازندران
چکیده
بتن پودری واکنشی نسل جدید مصالح بر پایه سیمان می‏باشد که به دلیل خصوصیات ریز ساختار آن دارای مقاومت بالا می‏باشد. از آنجا که این بتن نوظهور می‏باشد آیین نامه طراحی واحدی که دارای نتایج تجربی با کیفیت بالا به همراه مدل‏های تنش-کرنش قابل اعتماد برای تحلیل غیر خطی سازه‏ها باشد وجود ندارد. اگرچه تعدادی معادلات تجربی برای پیش‏بینی مقاومت اعضای ساخته شده از طریق این نوع بتن در ادبیات فنی موجود می‏باشد، اما باید در نظر داشت که این اطلاعات به خصوص در زمینه بتن پودری واکنشی حاوی الیاف سنتتیک و نیز ترکیب الیاف ها دارای نقص می‏باشد. از این رو، در این مقاله 10 طرح اختلاط از مخلوط بتن پودری واکنشی حاوی الیاف‏های فولادی، پلی وینیل الکل و ترکیب آنها در درصدهای حجمی متفاوت و با فرآیندهای مختلف عمل آوری ساخته شد و خصوصیات مکانیکی شامل مقاومت فشاری، کرنش در تنش حداکثر، مدول الاستیسیته، چقرمگی و انرژی جذب شده نسبی و نیز شکل منحنی تنش-کرنش مورد بررسی قرار گرفت. علاوه بر این، با توجه به نتایج آزمایشگاهی، روابط تجربی برای تخمین پارامترهای موثر در منحنی تنش-کرنش بتن پودری واکنشی ارائه شد. در نهایت، مدلی به منظور پیش بینی دقیق رابطه تنش-کرنش فشاری بتن پودری واکنشی پیشنهاد شد. نتایج نشان می دهد که مدل ‌پیشنهادی با دقت بسیار خوبی می‏تواند نتایج آزمایشگاهی را پیش‏بینی کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of compressive stress-strain behavior of RPC reinforced with steel and PVA fibers

نویسندگان English

Mahdi Nematzadeh 1
Reza Poorhosein 2
1 Department of civil engineering, University of Mazandaran, Babolsar, Iran
2 Civil Eng. Dept., Faculty of Engineering., University of Mazandaran
چکیده English

Reactive powder concrete (RPC) represents a new generation of cement-based materials composed of cement, reactive ultrafine powders, siliceous fine aggregates, super plasticizers and fibers. Due to its microstructural properties, this concrete demonstrates specific properties including high compressive and flexural strength, superb durability. Since this is a novel type of concrete, a single design code containing multiple experimental results of high quality, together with reliable stress-strain models for the nonlinear analysis of the structural members made of this concrete type is lacking. Although some experimental equations to predict the strength of the RPC members can be found in the literature, note that there are shortcomings in the information provided specifically regarding the RPC containing synthetic and hybrid fibers. Hence, in this study, ten different mix designs of RPC, containing steel fibers at the volume fractions of 1, 2, and 3%, polyvinyl alcohol fibers at the volume fractions of 0.25, 0.5, and 0.75%, together with hybridizations of the two fiber types at the total fiber volume fraction of 1% were prepared, and then tested to obtain accurate and applicable equations as well as the compressive stress-strain curve with the purpose of estimating the mechanical properties and better predicting the behavior of this type of concrete. Then, the effect of the type and volume fraction of fibers, together with curing regime on the properties of RPC including the compressive strength, strain at peak stress, modulus of elasticity, and the shape of stress-strain curve was investigated. The obtained results indicate that as the volume fraction of steel and polyvinyl alcohol fibers increases, the compressive strength and strain at peak stress of the RPC specimens decreases; a trend which is also observed as the volume fraction of synthetic fibers in the concrete mix containing hybrid fibers increases.. The trend which is observed for the strain at peak stress in the RPC is very close to that for its compressive strength. The secant and tangential modulus of elasticity values of the RPC also demonstrate trends similar to each other, and the tangential modulus of elasticity in all the specimens has values higher than the corresponding secant modulus of elasticity. The RPC containing high volume fractions of steel fibers shows high modulus of elasticity values, due to the crimped shape of fibers as well as the strong cohesion they provide in the concrete. Heat treatment has a positive effect on the compressive strength and strain at peak stress of the RPC specimens, due to the acceleration of the hydration process of cementitious materials at high temperatures as well as the formation of a dense matrix. By using the nonlinear regression analysis of the data, experimental equations were developed for the parameters affecting the stress-strain curve of RPC. Finally, based on the experimental parameters obtained for all the RPC specimens, a model was proposed to predict the compressive stress-strain curve. By comparing the proposed model with the experimental results of the stress-strain curve of RPC, it can be said that the proposed model is capable of predicting the experimental results with a very good accuracy.

کلیدواژه‌ها English

Reactive Powder Concrete
Stress-strain diagrams
Fibers
Heat Treatment