بررسی آزمایشگاهی تاثیر حضور دو مانع بر رفتار جریان گل آلود

نویسندگان
1 موسسه آموزش عالی اسرار مشهد
2 مربی تربیت مدرس
3 دانشگاه تربیت مدرس
چکیده
جریان‌های گل آلود عامل عمده و مهم انتقال رسوبات بداخل مخازن سدها، دریاها و اقیانوس‌ها می‌باشند. شناخت دینامیک این جریان‌ها به منظور پروسه‌های رسوبگذاری و فرسایش بسیار مهم و اساسی می‌باشد. در این تحقیق تاثیرات حضور دو مانع بر ساختار حرکت جریان گل‌آلود به صورت آزمایشگاهی مورد بحث و بررسی قرار خواهد گرفت. پروفیل‌های سرعت و غلظت جریان در شرایط شبه‌پایا با استفاده از دستگاه سرعت‌سنج صوتی Vectrino در بالادست مانع اول، فضای بین دو مانع و پایین دست مانع دوم اندازه‌گیری شده و با پروفیل‌های سرعت و غلظت در حالت بدون مانع مقایسه شده‌اند. مقادیر دبی در واحد عرض جریان و نرخ انتقال بار معلق بر اساس مقادیر سرعت و غلظت اندازه‌گیری شده، محاسبه شده‌اند. تاثیر تغییرات عدد فرود چگالی ورودی بر دبی جریان عبوری در واحد عرض و نرخ انتقال بار معلق بررسی شده است. نتایج نشان می‌دهد احداث موانع در مسیر جریان سبب شکل‌گیری نواحی جدید در پروفیل‌های سرعت خواهد شد و باعث می‌شود یک حوضچه آرام کننده جریان در بالادست مانع اول و فضای بین دو مانع شکل گیرد و محیط مناسب برای ته‌نشینی ذرات فراهم ‌گردد. روند تغییرات نرخ انتقال بار معلق و دبی جریان عبوری در واحد عرض تابعی از موقعیت نسبی موانع هستند. بگونه‌ای که روند تغییرات این پارامترها با تغییرات عدد فرود چگالی ورودی در بالادست مانع اول متناسب و در فاصله بین دو مانع و پایین‌دست مانع دوم معکوس خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Investigating on the Effects of Two Obstacles on Behaviour of Turbidity Current

نویسنده English

mandana naji abhari 1
چکیده English

Turbidity currents account for transporting sediments into reservoirs, seas, and oceans. Therefore, understanding dynamics of these currents for sedimentation and erosion is very important. In this paper, the effects of two obstacles on the behaviour of turbidity currents investigated experimentally. An 11 m long rectangular channel (11 m×0.6 m×1.0 m) with the bottom slope of 0.25% was used to run the experiments and a 3 m3 tank along with a constant head tank were served as the turbid water supplier. Two triangular obstacles were installed at predefined locations from the sluicegate. Then the experiments were carried out and the results compared with those from without obstacle condition. Velocity and concentration profiles at the upstream of first obstacle and between the first and second obstacles are measured by Vectrino at quasi-steady conditions and compared to those of without obstacle conditions showing a significant decrease of velosity in the presence of the two obstacles specially between the two obstacles and also at the downstream of the second obstacle. Fluid volume discharge per unit width and suspended sediment transport rate are calculated based on measured velocity and concentration. Also, the effects of inlet Froud number on the fluid volume discharge per unit width and suspended sediment transport rate was investigated. The results show that presence of obstacles introduces new regions to velocity profiles and two ponds of turbidity currents are formed at the upstream of the first obstacle and between the two obstacles. The hydraulic conditions at these ponds make a suitable condition for the suspended particles to be trapped and hence the sedimentation. Variation of the suspended sediment transport rate and the fluid volume discharge per unit width depend on obstacle location. These parameters at the upstream of the first obstacle are directly in proportion to the inlet Froud number while at the downstream the second obstacle and between the obstacles are inversely proportional. By decreasing the inlet Froud number, the volume discharge per unit width increases at the upstream of the first obstacle wheras, the amount decreases between the obstacles. Also, as the inlet Froud number decreases, the suspended sediment transport rate increases at the the upstream of the first obstacle but the value decreases between the obstacles and downstream of the second obstacle resulting the increase of the trap efficiency. The obstacles become more effective in controlling the turbidity currents when the inlet Froud number decreases. The first obstacle is 1.8 times more effective on reduction of local sedimentation rate than the second obstacle. These parameters at the upstream of the first obstacle are directly in proportion to the inlet Froud number while at the downstream the second obstacle and between the obstacles are inversely proportional. By decreasing the inlet Froud number, the volume discharge per unit width increases at the upstream of the first obstacle wheras, the amount decreases between the obstacles. Also, as the inlet Froud number decreases, the suspended sediment transport rate increases at the the upstream of the first obstacle but the value decreases between the obstacles and downstream of the second obstacle resulting the increase of the trap efficiency. The obstacles become more effective in controlling the turbidity currents when the inlet Froud number decreases. The first obstacle is 1.8 times more effective on reduction of local sedimentation rate than the second obstacle.

کلیدواژه‌ها English

Turbidity current
Obstacles
Inlet Froud number
Fluid volume discharge per unit width
Suspended sediment transport rate
[1] Simpson, J. E. 1997, Gravity currents: In the environment and the laboratory. New York:Cambridge University Press.
[2] Batuca, D. G. and Jordaan. J. M. 2000, Silting and Desilting of Reservoirs, CRC Press.
[3] Oehy, C., and Schleiss, A., 2007, Control of turbidity currents in reservoir by solid and permible obstacles, J. Hydr. Eng., ASCE, 133 (6), 637-648.
[4] Kneller, B.C., and McCaffrey, W. 1999, Depositional effects of flow nonuniformity and stratification within turbidity currents approaching a bounding slope: deflection, reflection, and facies variation, Journal of Sedimentary Research, 69, 980-991
[5] Middleton, G. V. 1966, Experiments on density and turbidity currents: I. motion of the head, Canadian Journal of Earth Sciences, 3, 523-546.
[6] Allen, J. R.L. 1971, Mixing at turbidity current heads and its geologic implications, J. Sediment. Petrol., 41, 97-113.
[7] Simpson, J.E. and Britter, R.E. 1979, The dynamics of the head of gravity current advancing over a horizontal surface, J. Fluid Mech., 94, 477-495.
[8] Britter, R. E. and Linden, P. F. 1980, The motion of the front of a gravity current traveling down an incline”, J. Fluid Mech., 99, 531-543.
[9] Altinakar, M. S., Graf, W. H. and Hopfinger, E. J. 1990, Weakly depositing turbidity current on a small slope, Journal of Hydraulic Research, 28(1), 55-80.
[10] Altinakar, M., and Graf, 1996, Flow structure in turbidity currents, Journal of hydraulic Research, 35 (5), 713-718.
[11] Garcia, M. H., and Parsons, J. D., 1996, Mixing at the front of gravity currents, Dyn. Atmos. Oceans, 24, 197-205.
[12] Zhu, J. B., Lee, C. B., Chen, G. Q. and Lee, J.H.W, 2006, PIV observation of instantaneous velocity structure of lock release gravity currents in the slumping phase, Communications in Nonlinear Science and Numerical Simulation, 11, 262–270.
[13] Kuenen, P, H, and Migliorini, C. I, 1950, Turbidity currents as a course of graded bedding, J. Geol., 58, 91-127
[14] Ellison, T.H., and Turner, J.S, 1959, Turbulent entrainment in stratified flows, J. Fluid Mech., 6, 423-488.
[15] Middleton, G. V., 1970, Experimental studies related to problems of Flysch sedimentation, In Flysch sedimentology in North America, ed, J. Lajoie, Geol. Assoc. Can. Spec. Pap. 7, 253- 272.
[16] Alavian, V., 1986, Behavior of density currents on an incline, J. Hydr. Eng., ASCE, 112(1), 27-42.
[17] Garcia, M. H., 1994, Depositional turbidity currents laden with poorly sorted sediment, J. Hydr. Eng., ASCE, 120(11), 1240-1263.
[18] Hosseini, S.A., Shamsai, A., Ataie-Ashtiani, B. 2006, Synchronous measurements of the velocity and concentration in low density turbidity currents using an Acoustic Doppler Velocimeter, Flow Measurement and Instrumentation, 17, 59–68.
[19] Firoozabadi, B; Afshin, H. and Bagherpour, A. 2009, Experimental Investigation of Turbulence Specifications of Turbidity Currents, Journal of Applied Fluid Mechanics, 3(1), 63-73.
[20] Nourmohammadi. Z., Afshin, H., and Firoozabadi, B., 2011, Experimental observation of the flow structure of turbidity currents, Journal of Hydraulic Research, 49(2), 168- 177.
[20] Alexander, J., and Morris, S.A., 1994, Observation on experimental non-channelized turbidities: thickness variation around obstacles, Journal of sedimentary petrology, 64, 899-909.
[21] Alexander, J., and Morris, S.A., 1994, Observation on experimental non-channelized turbidities: thickness variation around obstacles, Journal of sedimentary petrology, 64, 899-909.
[22] Wood, A. W., Bursik. M. I., Kurboatov. A. V. 1998, The interaction of ash flows with ridges, Bulletin of Volcanology, Springer-Verlag, 60, 38-51.
[23] Bursik, M.I., and Woods, A.W., 2000, The effects of topography on sedimentation from particle-laden turbulent density currents. Journal of Sedimentary Research, 70, 53–63.
[24] Morris, S. A. and Alexander, J. 2003, Changes in flow direction at a point caused by obstacles during passage of a density current, Journal of Sedimentary Research, 73(4), 621-629.
[25] Toniolo, H., Lamb, M., and Parker, G., 2006, Depositional turbidity currents in diapiric minibasins on the continental slope: formulation and theory, Journal of Sedimentary Research, 76, 783–797.
[26] Oshaghi, M. R., Afshin, H., and Firoozabadi, B. 2013, Experimental investigation of the effect of obstacles on the behaviour of turbidity currents, Canadian J. Civil Eng., 40(4), 343-352.
[27] Tokyay, T., and Constantinescu, G., 2015, The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents, Physics of fluids, 27(5).

[28] Maroosi, M. Ghomeshi, M. Bashavard, H. 2010, control of sedimentation in reservoirs by obstacles, 8th International river engineering conference, Ahwaz, (In Persian)
[29] Yaghoubi, S. Afshin, H. Firoozabadi, B. and Abazari, J. 2014, Experimantal investigation of obstacle height on 2D behavior of turbidity currents, 22nd Annual Conference of Mechanical Engineering, Ahwaz, (In Persian)
[30] Abhari, N. M. 2013, Experimental investigation of obstacle on sedimentary density current motion, PhD thesis, Tarbiat Modares University (In Persian)
[31] Daugherty, R. L. and Franzini, J. B. 1965, Fluid Mechanics with Engineering Applications, 6th ed., New York: McGraw-Hill, Chapter 10, 276-326.
[32] Bose, S. K., and Dey, S., 2009, Suspended load in flows on erodible bed, J. Sedi. Res., 24(3), 315–324.