تحلیل آماری حذف همزمان شوری و بارآلی توسط فرآیند گیاه‌پالایی

نویسندگان
دانشگاه تربیت مدرس
چکیده
در این تحقیق عملکرد گیاه وتیور Chrysopogon zizanioides و نخل مرداب Cyperus alternifolius در حذف همزمان شوری و بارآلی با پنج کیفیت فاضلاب مختلف با شوری به ترتیب (dS/m 0، 5/2، 5، 5/7 و 10)، COD به ترتیب (mg/L 0، 75، 150، 225 و 300) و آب خالص به عنوان شاهد بررسی شد. نتایج نشان داد که هر دو گیاه در راکتورهای با شوری کمتر عملکرد بهتری به لحاظ رشد و حذف شوری و بارآلی از خود نشان دادند. نشانه‌های مسمومیت شوری شامل سوختگی و پلاسیدگی در برگ‌ها در گیاه‌های وتیور و نخل مرداب به ترتیب در شوری بالاتر از dS/m 5/7 و 5 مشاهده شد. میزان کاهش شوری در تیمارهای مختلف برای گیاه وتیور، متفاوت و از 53 الی 4 درصد متغیر بود. میزان کاهش بار آلی نیز در تیمارهای گوناگون از 60 الی 12 درصد مشاهده شد. برای گیاه نخل مرداب میزان کاهش شوری و بار آلی در تیمارهای مختلف به ترتیب از 29 الی 1 درصد و 49 الی 5 درصد متغیر بود. آزمون مقایسه T مستقل نشان داد که افزایش شوری بر مشخصه‌های مورفولوژیک هر دو گیاه در بازه اطمینان 95 درصد به صورت معنی‌داری تاثیر گذار است. همچنین برازش رگرسیون تعمیم یافته نشان داد که وجود بارآلی روی مشخصات مورفولوژیکی گیاهان تاثیر قابل توجهی ندارد و تنها میزان شوری فاضلاب کنترل کننده مشخصات رشدی گیاه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Statistical analysis of simultaneous removal of salinity and organic loading from wastewater using phytoremediation process

نویسنده English

Hossei Ganjidoust
چکیده English

High salinity wastewater is one of the main environmental issues. Using biological treatment systems to treatment this kind of wastewater is hard due to loss of microorganisms. Phytoremediation is one of the main methods to treat this type of wastewater, which is an environmental friendly and a low cost process. In this research we aim to study operation of two plants, including chrysopogon zizanioides known as Vetiver grass and Cyperus alternifolius know as umbrella, to simultaneous removal of salinity and organic loading. We assume five different combination of wastewater which are called statistical treatments and characterized by different amount of salinity and COD. Statistical treatments contain wastewater with Electrical conductivity 0,2.5,5,7.5,10 (ds/m) and 0,75, 150, 250, 300 (mg/L) COD respectively. Pure water is used as control treatment. Results show that in reactors with low level of salinity, both plants have better operation in removing of salinity and organic loading. For electrical conductivity above 5 and 7.5 ds/m, signs of salinity stress including Chlorosis and withering seen in leaves of both plants. For chrysopogon zizanioides, different statistical treatments results in different removal of organic loading range from of 60 to 12 percent. Salinity removal is ranged from 53 to 4 percent. For Cyperus alternifolius reduction in organic loading and salinity are respectively varied from 49 to 5 and 20 to 1 percent. Results of this study in laboratory scale shows that using phytoremediation method in constructed wetland for different combination of salinity and organic loading results in 17 and 15 percent reduction in salinity and wastewater for each unit of chrysopogon zizanioides and Cyperus alternifolius respectively. By increasing the level of salinity the trend of electrical conductivity is decreased. For the wastewater with 2.5 ds/m electrical conductivity, the most absorbing salinity absorbing is seen for both plants, which is 53 percent for chrysopogon zizanioides and 30 percent for Cyperus alternifolius. Reduction in capability of absorbing salt occurred for both plants due to completeness of salt aggregation capacity of the plant. By increasing the electrical conductivity of wastewater solution, wither and reduction in operation of the plant is seen as well. Increasing the salinity level results in decreasing the trend of organic loading reduction. COD removal for chrysopogon zizanioides is greater than Cyperus alternifolius in all reactors, which is related to natural characteristics of this plant, higher tolerance of salinity fluctuations and different phytoremediation mechanism. In statistical analysis of morphological characteristics of plants, the statistical population is all plants for different combination of wastewater and statistical controls. For each plant, results of different statistical treatments are compared to each other. The null hypothesis for independent tests assumes that the waste water treatment doesn’t have effect on morphological characteristics of the plant. So, rejecting this hypothesis means that all combination of wastewater doesn’t have the same effect on morphological characteristics. This hypothesis is considered separately for each of morphological characteristics by use of two sided independent sample T-test. These characteristics included dry weight, mean leaf area, mean stem diagonal and root volume. Results indicate that increasing salinity will affect the morphological characteristics with 95% confidence. Fitting the generalized linear regression shows that existing of organic loading doesn’t have meaningful effect on morphological characteristics, and level of salinity of wastewater affect the growing characteristics of the plant.

کلیدواژه‌ها English

Phytoremediation
statistical analysis
chrysopogon zizanioides
Cyperus alternifolius
[1] Ruan C. J., da Silva J. A. T., Mopper S., Qin P., & Lutts S. 2010 Halophyte improvement for a salinized world. Critical Reviews in Plant Sciences, 29(6), 329-359.
[2] Parida A. K., & Das A. B. 2005 Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety, 60(3), 324-349.
[3] Davis M. 2010 Water and wastewater engineering. McGraw-Hill Science/Engineering/Math.
[4] Zhang B. Y., Zheng J. S., & Sharp R. G. 2010 Phytoremediation in engineered wetlands: Mechanisms and applications. Procedia Environmental Sciences, 2, 1315-1325.
[5] Lavelle P., & Spain A. V. 2001 Soil ecology. Springer Science & Business Media.
[6] Hewitt E. J. 1966 Sand and water culture methods used in the study of plant nutrition (Vol. 431). Farnham Royal: Commonwealth Agricultural Bureaux.
[7] Shelef O., Gross A., & Rachmilevitch S. 2012 The use of Bassia indica for salt phytoremediation in constructed wetlands. water research, 46(13), 3967-3976.
[8] White Jr P. M., Wolf D. C., Thoma G. J., & Reynolds C. M. 2003 Influence of organic and inorganic soil amendments on plant growth in crude oil‐contaminated soil. International journal of phytoremediation, 5(4), 381-397.
[9] Calheiros C. S., Rangel A. O., & Castro P. M. 2009 Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresource technology, 100(13), 3205-3213.
[10] Calheiros C. S. C., Teixeira A., Pires C., Franco A. R., Duque A. F., Crispim L. F. C., & Castro P. M. L. 2010 Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing. water research, 44(17), 5032-5038.
[11] Huang L., Zhuo J., Guo W., Spencer R. G., Zhang Z., & Xu J. 2013 Tracing organic matter removal in polluted coastal waters via floating bed phytoremediation. Marine pollution bulletin, 71(1), 74-82.
[12] Souza F. A., Dziedzic M., Cubas S. A., & Maranho L. T. 2013 Restoration of polluted waters by phytoremediation using Myriophyllum aquaticum (Vell.) Verdc., Haloragaceae. Journal of environmental management, 120, 5-9.
[13] Leto C., Tuttolomondo T., La Bella S., Leone R., & Licata M. 2013 Effects of plant species in a horizontal subsurface flow constructed wetland–phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). Ecological engineering, 61, 282-291.

[14] Kumari M., & Tripathi B. D. 2014 Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecological Engineering, 62, 48-53.
[15] Schwarz M. (1995). Soilless culture management. Springer-Verlag.
[16] Mosleh Abadi p., Vosoughi M., Ghadirian M. 2010 A Mathematical Model for Soil Pollution Removal by Phytoremediation Independent of Environmental Parameters, Water and Wastewater magazine, 1, 85-91.(In Persian)
[17] Wang X., Lu X., & Sun X. 2008 Studies on development of Vetiver root system in the rejuvenation period after transplanting: A fertilizer experiment.
[18] Wang S., Xu Z., & Li H. 2009 Influence of plant tillering and root volume on flow pattern and water purification of vertical down flow wetlands for domestic wastewater treatment. Water Science & Technology, 59(1).
[19] Wu L., & Dodge L. 2005 Landscape plant salt tolerance selection guide for recycled water irrigation. A Special Report for the Elvenia J Slosson Endowment Fund, University of California, Davis article, 40.
[20] Zhang X., Gao B., & Xia H. 2014 Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicology and Environmental Safety, 106, 102-108.
[21] Tuttolomondo T., Licata M., Leto C., Leone R., & La Bella S. 2015 Effect of plant species on water balance in a pilot-scale horizontal subsurface flow constructed wetland planted with Arundo donax L. and Cyperus alternifolius L.–Two-year tests in a Mediterranean environment in the West of Sicily (Italy).Ecological Engineering, 74, 79-92.
[22] Ezzatian R. 2008 Laboratory research and mathematical modeling for purification of oily polluted soils by phtoremidiation with using native plants. Ph.D. Thesis, College of Environmental, Sciences and Research Branch, Azad University, Tehran. (In Persian)
[23] Stecher M. C., & Weaver R. W. 2003 Effects of umbrella palms and wastewater depth on wastewater treatment in a subsurface flow constructed wetland. Environmental technology, 24(4), 471-478.
[24] Ahmadinejad M. Najafi, N. Asgharzad, N. Avestan, S. 012 Effects of Organic and Nitrogen Fertilizerson Water Use Efficiency, Yield and the Growth Characteristics of Wheat. Water and Soil Science, 23, 177-194. (In Persian)