بررسی آزمایشگاهی تاثیر همپوشانی صفحات مستغرق بالادستی ساعتگرد و پادساعتگرد بر توپوگرافی قوس توام با پایه پل منفرد

نویسندگان
1 معاون دانشکده فنی و مهندسی/دانشگاه خلیج فارس
2 دانشگاه خلیج فارس
3 عضو هیات علمی گروه مهندسی عمران دانشگاه خلیج فارس
چکیده
در این مقاله کاربرد صفحات مستغرق و تاثیر آن بر تغییرات توپوگرافی بستر قوس علی الخصوص اطراف پایه‌ی پل مورد بررسی قرار گرفته است. برای انجام آزمایش‌ها از یک پایه‌ی استوانه‌ایی از جنس PVCبه قطر5 سانتی‌متر مستقر در یک فلوم آزمایشگاهی با قوس 180 درجه‌ی تند با انحنای نسبی2 با ارتفاع 90 سانتی متر و عرض 100 سانتی متر استفاده گردید. طول مسیر مستقیم بالادست قوس 5/6 متر و طول مسیر مستقیم پایین دست 1/5 متر می‌باشد. در شرایط آب زلال با 97/0u_*/u_(*c) = آزمایشات انجام شد. جهت مدلسازی صفحات مستغرق از صفحاتی از جنس پلکسی گلاس با آرایش‌های مختلف با ضخامت معادل 20 درصد قطر پایه و طولی برابر 5/1 برابر قطر پایه با استغراق 75 درصد استفاده گردید. موقعیت قرارگیری مرکز صفحات به فاصله‌ی 7 برابر قطر پایه ازمرکز آن می‌باشد. آزمایشات برای صفحات مستغرق موازی با همپوشانی متفاوت به سمت ساحل داخلی و خارجی انجام گرفت. نتایج حاصله نشان می‌دهد که صفحاتی که به صورت موازی، با هم پوشانی 50 درصد و با زاویه ی 25 درجه پادساعتگرد با افق در جهت جریان، بهترین عملکرد در کنترل آبشستگی پایه پل داشته‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental investigation on the effect of overlapping upstream submerged vanes on bend topography with a bridge pier

نویسندگان English

Mohamad Vaghefi 1
Mohamad Vaghefi 1
1 Assistant professor
چکیده English

Submerged vanes are simple structures that can be used to control the sediment and redistribute the flow and sediment in open channels. Submerged vanes are low aspect ratio flow-training structures mounted vertically on the riverbed at an angle to the prevailing flow. The technique of submerged vanes is a new and efficient sediment management method in rivers. Odegard and et al (1991) are the creators of the idea of using vanes, they have chosen the angle of the vanes between 15 to 25 degrees and found that the vortex created by the vanes causes a change in the amount and direction of shear stress and dispersion velocity and depth,is resulting in sediment transport. When a submerged vane is installed in the river bed with a small angle to the flow direction, due to the pressure difference on either side of the vane, vortex and induced circulation is created around the vane. as a result of this vortex, at the downstream of vane, sediment are taken from the suction side of the vane and are deposited on the pressure side of the vane. So by installing a row of vanes on the riverbed, sediment can be distributed over a larger surface. In river meandering, when flow passes through a bend, reduction of flow velocity and rising hydrostatic pressure cause super elevation phenomena at outer side and reduction of water surface at inner-side of the bend. A helical motion results, causing erosion of the outer side of the bend. Installation of submerged vanes on the stream bed can reduce erosion of the outer bank significantly. Most of previous studies in this regard have been tasted in a rectangular flume cross section. In this research use of submerged vane and its influence on the bed topography changes, especially around the bridge pier is studied. Experiments were conducted in the laboratory flume with a 180 degree bend with rational curvature of 2 , height of 90 cm, width of 100 cm and a length of straight direction upstream and downstream of the bend respectively 6.5 m and 5 m, material with specific gravity of 1.5 and a cylindrical pier of 5 cm diameter, With clear water conditions u_*/u_(*c) =0.97 ,the water discharge of 70 liters per second, with a depth of 18 cm was tested. The vane was made of 10 mm thick plaxi glass. The height of the vane above the streambed level was 4.5 cm, 75% of the flow depth. and its length is 7.5 cm (1.5 D, D= pier`s diameter). Dissimilar arrays of vanes with same angles (25 degree) to main flow direction were employed. Five experiments were carried out considering various positions of the submerged vanes and one experiment was done without the presence of vanes, only with a bridge pier located at 90 degrees. The performance and efficiency of a submerged vane is related to its position. The results illustrate that the experiment with vanes in parallel, by overlapping of 50%, under angle of 25 degrees counterclockwise with the horizon in the direction of flow, has the best performance in control of pier scour protection.

کلیدواژه‌ها English

Scouring
Bridge pier
submerged vanes
180 degree bend
Newmark, N.M. and Hall, W.J. Pipeline Design to Resist Large Fault Displacement.
- Kennedy, R., Chow, A. and Williamson, R. 1977 Fault Movement Effects on Buried Oil Pipeline, Transportation Engineering Journal of ASCE, Vol. 103, NO. TE5, pgs-617-633.
- Wang, L.R.L. and Yeh, Y.H. 1985 A refined seismic analysis and design of buried pipeline for fault movement. Earthquake engineering & structural dynamics, 13 (1), 75-96.
- Karamitros, D.K., Bouckovalas, G.D. and Kouretzis, G.P. 2007 Stress analysis of buried steel pipelines at strike-slip fault crossings. Soil Dynamics and Earthquake Engineering, 27 (3), 200-211.
- Ariman, T. and Lee, B. On beam mode of buckling of buried pipelines, pp. 26-29.
- Meyersohn, W.D. 1991 Analytical and design considerations for the seismic response of buried piplines. Thesis, Cornell University.
- O'Rourke, M.J. and Liu, X. 1999 Response of buried pipelines subject to earthquake effects.
- Takada, S., Hassani, N. and Fukuda, K. 2001 A new proposal for simplified design of buried steel pipes crossing active faults. Earthquake engineering & structural dynamics, 30 (8), 1243-1257.
- Vazouras, P., Karamanos, S.A. and Dakoulas, P. 2010 Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dynamics and Earthquake Engineering, 30 (11), 1361-1376
- Vazouras, P., Karamanos, S.A. and Dakoulas, P. 2012 Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dynamics and Earthquake Engineering, 41, 164-180.
- Joshi, S., Prashant, A., Deb, A. and Jain, S.K. 2011 Analysis of buried pipelines subjected to reverse fault motion. Soil Dynamics and Earthquake Engineering, 31 (7), 930-940.
- Jalali, H.H., Rofooei, F.R., Attari, N.K.A. and Samadian, M. 2016 Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines. Soil Dynamics and Earthquake Engineering, 86, 1-14.
- Corp., D.S.S. 2012 Abaqus 6.12 User's Manual. Dassault Systemes Simulia Corp., Providence, USA.
- Karamitros, D., Bouckovalas, G., Kouretzis, G. and Gkesouli, V. 2011 An analytical method for strength verification of buried steel pipelines at normal fault crossings. Soil Dynamics and Earthquake Engineering, 31 (11), 1452-1464.
- Xie, X., Symans, M.D., O'Rourke, M.J., Abdoun, T.H., O'Rourke, T.D., Palmer, M.C. et al. 2013 Numerical modeling of buried HDPE pipelines subjected to normal faulting: a case study. Earthquake Spectra, 29 (2), 609-632.
- API. 2004 Specification for Line Pipe. In API Specifications 5L, American Petroleum Institute.