تخمین میرایی در سازه ها بر مبنای فقط-خروجی با استفاده از روش تجزیه ی حوزه ی فرکانسی بهبودیافته

نویسندگان
1 دانشگاه فردوسی مشهد
2 عضو هیئت علمی دانشگاه فردوسی مشهد
3 عضو هیات علمی ، دانشگاه سوس، کشور تونس
چکیده
شناسایی پارامترهای مدال سازه‌ها اهمیت فراوانی را در بسیاری از حوزه‌های مهندسی عمران و مکانیک داراست. امروزه روش‌های شناسایی مبتنی بر پاسخ سازه محبوبیت روز افزونی یافته است. در این روش‌ها، که اصطلاحا آنالیز مدال عملیاتی نام دارند، پارامترهای دینامیکی سازه (فرکانس‌های طبیعی، شکل‌های مدی و نسبت‌های میرایی) تنها با در دست داشتن پاسخ خروجی سازه قابل تخمین است. در این خصوص، با فرض آنکه نیروی ورودی به سازه دارای ماهیتی تصادفی و پهن‌باند باشد، نیازی به اندازه‌گیری نیروی ورودی وجود ندارد. یکی از توانمندترین روش‌های آنالیز مدال عملکردی در حوزه‌ی فرکانس، روش تجزیه‌ی حوزه‌ی فرکانسی بهبودیافته نام دارد. فرآیند شناسایی در این روش بر مبنای تجزیه‌ی مقادیر تکین ماتریس چگالی طیف توان پاسخ سازه قرار دارد. علی‌رغم توانمندی بالا، این روش در تخمین میرایی سازه‌ها عملکرد چندان قابل قبولی ندارد. در این مقاله ابتدا روش تجزیه‌ی حوزه‌ی فرکانسی بهبودیافته تشریح و ویژگی‌های آن، به‌ویژه در حوزه‌ی تخمین میرایی، مورد بررسی قرار میگیرد. سپس، به‌منظور بهبود عملکرد آن در تخمین میرایی، استفاده از راه‌کار تخصیص مدال عملکردی پیشنهاد میشود. ایده‌ی اصلی روش پیشنهادی بر آن اساس استوار است که تابع خودهمبستگی پاسخ خروجی یک سیستم ارتعاشی تحت اثر نویز سفید، با تابع پاسخ ضربه آن سیستم و البته با یک اختلاف فاز مشخص برابر می‌باشد. با استفاده از 70 مرتبه شبیه‌سازی یک سازه‌ی چهارطبقه‌ی برشی، توانمندی تخمین میرایی روش پیشنهادی در کنار راهکار تجزیه‌ی حوزه-ی فرکانسی ارزیابی و نتایج با یکدیگر مقایسه می‌گردد. نتایج حاصل شده، کاهش قابل توجه خطای نسبی و واریانس تخمین میرایی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Output-only damping estimation of structures using enhanced frequency domain decomposition method

نویسندگان English

Morteza Ghalishooyan 1
Maher Abdelghani 3
چکیده English

Modal parameter identification of structures is of significant importance in many fields of civil and mechanical engineering. Output-only modal identification methods have gained great attention of civil engineers community in recent years. The algorithms estimating the dynamic parameters (natural frequencies, mode shape vectors and modal damping ratios) of structures just based on the output responses, became popular as operational modal analysis (OMA) or output-only modal analysis or ambient vibration analysis. In the context of OMA, the force acting on the structure should be stochastic, smooth and broadband and there is no need to measure it. Therefore, these methods are appropriate for identification of huge and complex civil structures. One of the most well-established and popular methods of OMA is frequency domain decomposition (FDD) proposed by Brincker et al. Estimation procedure of FDD is based on singular value decomposition of power spectral density matrix of structure responses. Then, the single degree of freedom spectral bell is obtained using modal assurance criteria (MAC) and transformed to correlation function of corresponded degree of freedom by inverse Fourier transform. Later, Brincker et al. presented the enhanced frequency domain decomposition (EFDD) method to estimate not only modal frequencies (with higher accuracy in the comparison with FDD) and mode shapes, but also modal damping ratios. Despite the high capability of EFDD in frequency and mode shape estimation, it still suffers from some limitations in identifying modal damping ratio. This paper first aims to investigate the modal parameters identification by EFDD and explains its merits and demerits and then proposes in-operation modal appropriation (INOPMA) algorithm for use with EFDD to improve the modal damping estimation. The key idea of INOPMA is to realize that the correlation sequence of the system output (subjected to random input) is the sum of decaying sinusoids with a certain phase shift and therefore it may be considered as an impulse response. The convolution of this correlation sequence with a pure sine wave allows the isolation of the mode at a characteristic frequency which depends on the modal damping ratio. By using a force in quadrature of phase with a sine wave, it is possible to estimate the damping ratio which in turn allows the estimation of the undamped natural frequency. In fact, modal damping ratios are first estimated by INOPMA and natural frequencies are then identified based on damping ratio values. By 70 times simulation of a four-story shear frame, capability of proposed method is validated for damping estimation through EFDD analysis. The results are then compared with the ones derived from the typical EFDD method. Regarding randomness of input force, different results are obtained by each new simulation run. So, the comparison process should be performed based on several numbers of simulations. The number of simulation was adopted in a way that the mean or variance of estimated modal damping ratios converges to a constant value. The relative error (the exact value minus the estimated value over the exact value) and variance of the set of the estimated modal dampings are regarded as comparison indexes. Finally, it is shown that by proposed method, the damping ratios are estimated with much less variance and error.

کلیدواژه‌ها English

Output-only modal damping estimation
Enhanced frequency domain decomposition method
In-operation modal appropriation algorithm
1. Cunha, Á., & Caetano, E. 2006. Experimental Modal Analysis of Civil Engineering Structures. Sound and Vibration, 6(40), 12–20.
2. James, G. H., Crane, T. G., & Laufer, J. 1995. The natural excitation technique (NExT) for modal parameter extraction from operating structures. The International Journal of Analytical and Experimental Modal Analysis, 10, 260–277.
3. Andersen, P. 1997. Identification of Civil Engineering Structures using Vector ARMA Models. Ph.D. Thesis, Aalborg University, Denmark.
4. Peeters, B., & De Roeck, G. 2001. Stochastic System Identification for Operational Modal Analysis: A Review. Journal of Dynamic Systems, Measurement, and Control, 123(4), 659–667.
5. Allemang, R. J. 1999. Vibrations: Experimental Modal Analysis. Structural Dynamics Research Laboratory, Department of Mechanical, Industrial and Nuclear Engineering, University of Cincinnati.
6. Brincker, R., Zhang, L., & Andersen, P. 2000. Modal Identification from Ambient Responses using Frequency Domain Decomposition. In Proceedings of the 18th IMAC. San Antonio, Texas.
7. Brincker, R., Ventura, C., & Andersen, P. 2001. Damping Estimation by Frequency Domain Decomposition. In Proceedings of the 19th IMAC. Orlando, Florida.
8. Poncelet, F., Kerschen, G., Golinval, J. C., & Verhelst, D. 2007. Output-only modal analysis using blind source separation techniques. Mechanical Systems and Signal Processing, 21(6), 2335–2358.
9. Devriendt, C., & Guillaume, P. 2008. Identification of modal parameters from transmissibility measurements. Journal of Sound and Vibration, 314(1–2), 343–356.

10. Ghalishooyan, M., & Shooshtari, A. 2015. Operational modal analysis techniques and their theoretical and practical aspects: A comprehensive review and introduction. In Proceedings of the 6th IOMAC. Gijón, Spain.
11. Rainieri, C., & Fabbrocino, G. (2014). Operational Modal Analysis of Civil Engineering Structures: An Introduction and Guide for Applications. Springer.
12. Magalhães, F., & Cunha, Á. 2011. Explaining operational modal analysis with data from an arch bridge. Mechanical Systems and Signal Processing, 25(5), 1431–1450.
13. Bendat, J. S., & Piersol, A. G. 2010. Random Data: Analysis and Measurement Procedures (4th edition.). Hoboken, New Jersey: Wiley.
14. Meirovitch, L. 1986. Elements of Vibration Analysis. McGraw-Hill.
15. Abdelghani, M., & Inman, D. J. 2015. Modal Appropriation for Use with In-Operation Modal Analysis. Shock and Vibration, 2015(ID 537030).
16. Balmes, E., Chapelier, C., Lubrina, P., & Fargette, P. 1996. An Evaluation of Modal Testing Results Based on the Force Appropriation Method. In Proceedings of the 13th International Modal Analysis Conference. Orlando, Florida.
17. Abdelghani, M., Ghalishooyan, M., & Shooshtari, A. 2017. A Comparative Assessment of In-Operation Modal Analysis and Frequency Domain Decomposition Algorithm Using Simulated Data. In Advances in Acoustics and Vibration (pp. 215–221). Springer.
18. Peeters, B., & De Roeck, G. 2001. One-year monitoring of the Z24-Bridge: environmental effects versus damage events. Earthquake Engineering & Structural Dynamics, 30(2), 149–171.
19. Reynders, E., & Roeck, G. D. 2014. Vibration-Based Damage Identification: The Z24 Bridge Benchmark.Encyclopedia of Earthquake Engineering (pp. 1–8).