بررسی اثر تغییر در مشخصات مصالح برروی رفتار دیوارهای بنایی غیر مسلح جهت استفاده در مطالعات آسیب‌پذیری لرزه‌ای

نویسندگان
1 دانشجوی دکتری، مرکز تحقیقات راه مسکن و شهرسازی
2 عضو هیئت علمی بخش تحقیقات سازه مرکز تحقیقات راه مسکن و شهرسازی
3 عضو هیئت علمی مرکز تحقیقات راه، مسکن و شهرسازی
چکیده
هدف از تحقیق حاضر بررسی رفتار دیوارهای بنایی غیرمسلح استفاده شده در ساختمان‌های بنایی موجود در کشور به عنوان عضو اصلی باربر جانبی، می‌باشد. در حالت کلی دیوارهای موجود در ساختمان‌های بنایی کشور دارای مشخصات مصالح متفاوت می‌باشند. ارزیابی رفتار دیوارهای ساخته شده با کیفیت مصالح متفاوت به منظور انتخاب مناسب‌ترین راهکار مقاوم‌سازی، حائز اهمیت می‌باشد. برای این منظور یک مطالعه آزمایشگاهی بر روی 2 نمونه با مقیاس واقعی انجام پذیرفت. تغییر در مشخصات ملات مورد استفاده برای آجرچینی دیوار به عنوان مشخصه اصلی تحقیق درنظر گرفته شده است. برای ساخت نمونه‌ها از آجرها و سیستم آجرچینی مشابه اما مشخصات ملات‌های متفاوت استفاده شده است. براساس نتایج آزمایشات، استفاده از ملات با کیفیت مناسب‌تر، در کنار افزایش 20 درصدی در مقاومت، ظرفیت تغییرشکل نمونه را در حدود 70 درصد افزایش داد که این موضوع به خصوص در مناطق لرزه خیز بسیار مطلوب می‌باشد. همچنین کیفیت مناسب‌تر ملات موجب افزایش قابل‌توجه در جذب انرژی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Effect of Changing in Material Properties on the Behavior of Un-Reinforced Masonry (URM) Walls For Using in Seismic Vulnerability Studies

نویسندگان English

Mojtaba Shabdin 1
Nader K.A. Attari 2
Mojdeh Zargaran 3
1 Building and Housing Research Center
2 Structural eng. Department, Building and Housing Research Center
3 Building and Housing Research Center
چکیده English

This paper presents the results of cyclic tests investigating the in-plane behavior of URM walls as the main lateral resistant members in school buildings. Generally, URM walls of existing building in the country contain different material properties with different strengths. Therefore, considering the effect of changing in material properties on their failure modes is required. A hypothetical two-story URM building was defined as the prototype structure of the presented cyclic in-plane research study. This prototype structure was selected to be a proper representative of existing URM school buildings in Iran. First story walls of this building with a loading bay equal to five meter were selected as the test specimens. Some properties of specimens were assumed and considered stationary to make the global response of the specimen match with the real condition of existing URM buildings in Iran. For this purpose, the thickness and the height of the walls were considered 0.35 and 3 m, respectively. The experimental study was carried out on two full-scale specimens. A special height-to-length aspect ratio of the wall was selected to generate enough lateral strength to ensure the bed-joint sliding failure of the URM wall during in-plane cyclic experiment. Lateral strength, Q, of considering URM walls was considered the lesser of the lateral strength based on bed-joint sliding, rocking, diagonal tension or toe crushing strengths. Changing in material properties of walls was considered as the major parameters in the investigation. The specimens were constructed in the structural laboratory of Building and Housing Research Center (B.H.R.C) and subjected to a sequence of cyclic loads. In the construction of walls, similar brick with different mortar and then different strengths were used. According to the results, the behavior of specimens revealed that they could be able to maintain a significant amount of their resistance after cracking without considerable strength degradation especially for the wall with proper mortar strength. Therefore, URM walls can resist lateral load after formation of the first crack with little lose of strength. According to this ductile behavior of walls and partnership of other elements in lateral load capacity of URM building, the estimation of system strength could be more than limited strength by the first crack of the wall. Changing in material properties of wall affected the failure mode, lateral resistant, displacement capacity, and energy dissipation. The specimen with proper mortar strength experienced bed-joint sliding failure mode, while the specimen with weaker mortar strength experienced mixed sliding-diagonal failure mode. The relationships presented in the standards can present relatively proper prediction for shear sliding capacity of the specimens, while the predicted capacity of them for diagonal capacity is overestimated. Test results showed that the improving the material properties of URM wall improved the lateral strengths of specimens. The wall constructed with the mortar with more appropriate properties revealed more lateral resistant and could experience more deformations. This wall could dissipate much more energy. The experimental m-factors were higher than current code values for both specimens and improving the material properties resulted in a considerable increment in m-factor.

کلیدواژه‌ها English

Unreinforced Masonry Walls
cyclic test
failure mode
mortar properties
school building

[1] Russell, A. P., and Ingham, J. M. (2010). The influence of flanges on the in-plane seismic performance of URM walls in New Zealand buildings. NZSEE Conference, Wellington, New Zealand.
[2] Bui, T.-L., Si Larbi, A., Reboul, N., and Ferrier, E. (2015). Shear behaviour of masonry walls strengthened by external bonded FRP and TRC. Composite Structures, 132(Supplement C), 923-932.
[3] Yaghoubifar, A., and Tasnimi, A. A. (2008). Experimental and Analytical Investigation on The Behavior of Strengthened Brick Walls by Steel Bars and Concrete. Tarbiat Modares University, Master Degree in Earthquake Engineering.
[4] Abrams, D. P., and Shah, N. (1992). Cyclic Load Testing of Reinforced Masonry Wall. Urbana-Champaign: Advanced Construction Technology Centre, College of Engineering, University of Illinois.
[5] Nateghi, F., and Alemi, F. (October 12-17, 2008). Experimental Study of Seismic Behaviour of Typical Iranian URM Brick Walls. The 14th World Conference on Earthquake Engineering, Beijing, China.
[6] Shabdin, M., Attari, N. K. A., and Zargaran, M. (2018). Experimental study on seismic behavior of Un-Reinforced Masonry (URM) brick walls strengthened with shotcrete. Bulletin of Earthquake Engineering.
[7] Ministry of Education. (2010). Practical Instruction: Shotcrete in Seismic Rehabilitation of Schools. State Organization of School Renovation Development & Mobilization, (In Persian).
[8] FEMA547. (2006). Techniques for the Seismic Rehabilitation of Existing Buildings. Federal Emergency Management Agency (FEMA), Washington (DC).
[9] Macabuag, J. (2007). An Introduction to Modelling and Retrofitting of Non-Engineered Masonry Buildings Under Seismic Loading. Oxford University.
[10] ASCE 41-06. (2006). Seismic Rehabilitation of Existing Buildings. American Society of Civil Engineers (ASCE).
[11] ASCE 41-13. (2013). Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers (ASCE).
[12] Code No. 360. (2013). Instruction for Seismic Rehabilitation of Existing Buildings. Management and Planning Organization (Office of Deputy for Technical Affairs), (In Persian).
[13] FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings, . Federal Emergency Management Agency (FEMA), Washington (DC).
[14] Mazroui, A., Yaghoubifar, A., Ardakani, M. H. M., Nejad, E. Z., and Jafarour, F. (2012). Experimental evaluation of mechanical properties of conventional sand-cement mortars (for brickwork). Building & Housing Research Center, Tehran, Iran, (In Persian).
[15] EN 1015-11. (1993). Methods of test for mortar for masonry – Part 11: determination of flexural and compressive strength of hardened mortar. European Committee for Standardization, Brussels.
[16] ASTM C-67-00. (2002). Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile, ASTM International, West Conshohocken, PA, www.astm.org. American Society for Testing and Materials.
[17] ASTM C-1314-02a. (2002). Standard Test Method for Compressive Strength of Masonry Prisms, ASTM International, West Conshohocken, PA, www.astm.org. American Society for Testing and Materials,.
[18] ASTM C109/C109M-16a. (2016). Standard Test Method for Compressive strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM International, West Conshohocken, PA, www.astm.org. American Society for Testing and Materials,.
[19] Harris, H. G., and Sabnis, G. M. (1999). Structural modeling and experimental techniques. CRC Press, New York, NY, USA.
[20] AC125. (2010). Acceptance Criteria for Concrete and Reinforced and Unreinforced Masonry Strengthening Using Externally Bonded Fiber-Reinforced Polymer (FRP) Composite Systems. ICC evaluation service.