بررسی تأثیر نانولوله هالوسیت بر کارایی و نفوذپذیری ملات ماسه سیمان

نویسندگان
1 دانشجوی کارشناسی ارشد سازه، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران
2 عضو هیات علمی دانشکده مهندسی عمران دانشگاه علم و صنعت ایران
3 دانشجوی کارشناسی ارشد دانشکده مهندسی عمران دانشگاه علم و صنعت ایران
4 عضو هیات علمی دانشکده مهندسی شیمی
چکیده
در دهه‌های اخیر مطالعات زیادی در زمینه تأثیر نانو ذرات رس بر خصوصیات کامپوزیت‌های سیمانی انجام ‌شده است. بااین‌وجود، برخلاف خواص مطلوب نانوذرات هالوسیت از جمله سطح ویژه بالا، خاصیت پوزولانی، نسبت طول به قطر قابل ملاحظه که می‌تواند تاثیر قابل ملاحظه‌ای بر دوام بتن داشته باشد تحقیقات اندکی در رابطه با تأثیر این نانوذرات به‌عنوان زیر‌شاخه‌ای از نانو ذرات رس بر خصوصیات کامپوزیت‌های سیمانی انجام شده است. لذا در این تحقیق تأثیر نانو‌ذرات هالوسیت بر عملکرد ملات سیمانی ارزیابی‌شده و کارایی و نفوذپذیری نمونه‌های ملات حاوی 3 درصد نانولوله هالوسیت مورد بررسی قرارگرفته است. نتایج این پژوهش حاکی از افزایش 28 درصدی مقاومت الکتریکی، کاهش تقریبی 26 درصد نرخ جذب آب، کاهش حدودی 23 درصد در نرخ دفع آب و همچنین کاهش کارایی و افزایش سرعت هیدراتاسیون ملات حاوی 3 درصد نانولوله هالوسیت در مقایسه با نمونه ملات شاهد بوده است. این نتایج بیانگر آن است که نانو‌لوله هالوسیت می‌تواند به‌عنوان یک نانو‌ذره مناسب برای بهبود خواص بتن مورداستفاده قرار گیرد. نتایج این تحقیق می‌تواند به کاربرد نانوذرات در ماتریس‌های سیمانی کمک نموده و زمینه استفاده از سیمان‌های کاراتر را فراهم نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of halloysite nanotubes on workability and permeability of cement mortar

نویسندگان English

Mehrdad Razzaghian Ghadikolaee 1
Asghar Habibnejad Korayem 2
Mahyar Ghoroqi 3
Alireza Sharif 4
1 MSc student, School of Civil Engineering, Iran University of Science and Technology
2 Assistant professor, Faculty of Civil Engineering, Iran University of Science and Technology
3 MSc student, School of Civil Engineering, Iran University of Science and Technology
4 Assistant Professor, School of Chemical Engineering, Tarbiat Modares University
چکیده English

In the last decades, the development of nanotechnology has been rising and nanomaterials have been widely used in combination with many traditional materials. The prominent chemical and physical properties of nanomaterials enable them to play an important role in various applications such as modifying the structure of materials, improving the properties of composites, and manufacturing new multifunctional products. The building industry has not been exempted from this rule. Many studies have been carried out on the effect of nanoparticles on concrete performance and most of them demonstrated the improvement of concrete properties. There are a lot of studies on the effect of nanoclay on cement composites. However, there are little researches on the halloysite nanotube (HNT) effect, as subcategories of nanoclay, on the properties of cement composites. Halloysites are a kind of mineral clay which are often produced by air-induced erosion or by thermal transformation of ultramafic rocks, volcanic glasses, and pumice. They are chemically similar to kaolinite but, unit layers in halloysites are separated by a monolayer of water molecules. In general, halloysites have different shapes and exist in the plate, spherical, and tubular forms. The tubular structure is the dominant form of halloysite in nature. Chemically, the outer surface of the HNTs has properties similar to SiO2 while the inner cylinder core is related to Al2O3. Due to the tubular geometry, HNTs like carbon nanotubes could be classified as one-dimensional nanoparticles. Halloysite can grow into long multi-walled tubules, which morphologically resemble to multi-walled carbon nanotubes. In terms of dimensional characteristics, HNTs have an external diameter of about 30 to 190 nm, an inner diameter of about 10 to 100 nm and a length between 3 to 30 µm. Halloysite characteristics could be sum up as high length to diameter (L/D) ratio, high specific surface, large pore volume, low density in surface, and pozzolanic properties. Mechanical properties of HNTs could make them an ideal reinforcing additive to improve the mechanical properties of cement composites. In addition, due to the nano scale size of HNTs, they can play the role of filler and make a denser and stronger microstructure. Therefore, in this research, the effect of HNTs on the performance of cement mortar was evaluated and the workability and permeability of mortar samples containing 3% halloysite nanotubes were presented. The results indicated an increase of more than 28% of electrical resistance, a decrease of approximately 26% of water absorption rate, 23% reduction in water repellent, a decrease in the workability, and an increment in the rate of hydration of cement mortar due to the incorporation of 3% halloysite nanotube. These results indicate that halloysite nanotubes can be used as an appropriate nanoparticle to improve the properties of cementitious composites. The pozzolanic properties of HNTs enable them to decrease the permeability of cementitious matrices. Silicate of HNTs react with calcium ions of hydrated cement and increase the calcium silicate hydrate gel. This could lead to an enhancement in the durability of cementitious matrices. This paper can provide more insights on the application of nanoparticles with cementitious composites.

کلیدواژه‌ها English

Halloysite nanotubes
Workability
permeability
Cement mortar
[1] Mohamed, A.M.. 2016 Influence of nano materials on flexural behavior and compressive strength of concrete. HBRC Journal, 12(2): p. 212-225.
[2] Qing, Y., et al.. 2007 Influence of nano-SiO 2 addition on properties of hardened cement paste as compared with silica fume. Construction and building materials, 21(3): p. 539-545.
[3] Silvestre, J., N. Silvestre, and J. de Brito. 2016 Review on concrete nanotechnology. European Journal of Environmental and Civil Engineering, 20(4): p. 455-485.
[4] Shekari, A. and M. Razzaghi. 2011 Influence of nano particles on durability and mechanical properties of high performance concrete. Procedia Engineering, 14: p. 3036-3041.
[5] Tayser Sumer Gaaz, M.N.M.A., Robert A. Shanks ,Ing Kong, Mechanical Properties of Halloysite Nanotube (HNT)Polyurethane (PU) Nano-composites.
[6] Ozyildirim, C. and C. Zegetosky. 2010 Laboratory investigation of nanomaterials to improve the permeability and strength of concrete. (No. FHWA/VTRC 10-R18).
[7] Owsiak, Z., et al.. 2015 Properties of Autoclaved Aerated Concrete with Halloysite Under Industrial Conditions. Procedia Engineering, 108: p. 214-219.
[8] Morsy, M., S. Alsayed, and M. Aqel. 2010 Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 10(01): p. 23-27.
[9] Li, W., et al. 2015 Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Construction and Building Materials, 95: p. 366-374.
[10] Kalpokaitė-Dičkuvienė, R., et al., Influence of the organically modified nanoclay on properties of cement paste.
[11] Farzadnia, N., et al. 2013 Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cement and Concrete Research, 48: p. 97-104.
[12] Zhang, H., et al. 2015 The modification effects of a nano-silica slurry on microstructure, strength, and strain development of recycled aggregate concrete applied in an enlarged structural test. Construction and Building Materials, 95: p. 721-735.
[13] Madani, H., A. Bagheri, and T. Parhizkar. 2012 The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cement and concrete research, 42(12): p. 1563-1570.
[14] Morsy, M., S. Alsayed, and M. Aqel. 2011 Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Construction and Building Materials, 25(1): p. 145-149.
[15] Nazari, A. and S. Riahi. 2011 Assessment of the effects of Fe2O3 nanoparticles on water permeability, workability, and setting time of concrete. Journal of Composite Materials, 45(8): p. 923-930.
[16] Konsta-Gdoutos, M.S., Z.S. Metaxa, and S.P. Shah. 2010 Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40(7): p. 1052-1059.
[17] Yousefi, A., A. Allahverdi, and P. Hejazi. 2013 Effective dispersion of nano-TiO 2 powder for enhancement of photocatalytic properties in cement mixes. Construction and building materials, 41: p. 224-230.
[18] Nazari, A. and S. Riahi. 2011 Al 2 O 3 nanoparticles in concrete and different curing media. Energy and Buildings, 43(6): p. 1480-1488.
[19] Pan, Z., et al. 2015 Mechanical properties and microstructure of a graphene oxide–cement composite. Cement and Concrete Composites, 58: p. 140-147.
[20] Yuan, P., D. Tan, and F. Annabi-Bergaya. 2015 Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112: p. 75-93.
[21] Wang, W.-C., S.-Y. Wang, and C.-H. Lin. 2016 Effect of Hot Environment on Strength and Heat Transfer Coefficient of Nano-Clay Concrete Paper Title. Journal of Materials Science and Chemical Engineering, 4(07): p. 45.
[22] Amin, M. and K. Abu el-Hassan. 2015 Effect of using different types of nano materials on mechanical properties of high strength concrete. Construction and Building Materials, 80: p. 116-124.
[23] Parrott, L. 1992 Water absorption in cover concrete. Materials and Structures, 25(5): p. 284-292.
[24] Khaloo, A., M.H. Mobini, and P. Hosseini. 2016 Influence of different types of nano-SiO 2 particles on properties of high-performance concrete. Construction and Building Materials, 113: p. 188-201.
[25] Hilsdorf, H. and J. Kropp. 2004 Performance criteria for concrete durability. Vol. 12. CRC Press.
[26] Prashantha, K., M. Lacrampe, and P. Krawczak. 2011 Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Letters, 5(4).
[27] John, U., et al. 2011 Leaching evaluation of cement stabilisation/solidification treated kaolin clay. Engineering geology, 123(4): p. 315-323.
[28] Mehta‬, ‮‭P. K. 2012 Microstructure, Properties, and Concrete Components (Advanced Concrete Technology), Translation by A.A Ramezanianpour, P.Ghodousi, I.Ganjian. Amir Kabir University of Technology Publication (Tehran Polytechnic). (In Persian).‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
[29] Korayem, A., et al. 2017 A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Construction and Building Materials, 153: p. 346-357.
[30] Wong, H.S., et al. 2015 Hydrophobic concrete using waste paper sludge ash. Cement and Concrete Research, 70: p. 9-20.
[31] M.Tadayon, M.Khanzadi, M.Maleki, S.Zahab. 2014 Comparison of Electrical Resistivity of Concrete Evaluated by Bulk Method and Electrical Conductivity Method ASTM C1760-12. 6th Annual National Concrete Conference of Iran-Tehran. (In Persian).
[32] ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, West Conshohocken, PA, 2013, www.astm.org.
[33] Quenard, D.A., et al. 1998 Microstructure and transport properties of porous building materials. Materials and Structures, 31(5): p. 317-324.

[34] Hall, C. 1994 Barrier performance of concrete: a review of fluid transport theory. Materials and Structures, 27(5): p. 291-306.
[35] Hall, C. 1977 Water movement in porous building materials—I. Unsaturated flow theory and its applications. Building and Environment, 12(2): p. 117-125.
[36] Aldred, J., et al. 2001 The effect of initial moisture content on water transport in concrete containing a hydrophobic admixture. Magazine of Concrete Research, 53(2): p. 127-134.
[37] Chithra, S., S.S. Kumar, and K. Chinnaraju. 2016 The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate. Construction and Building Materials,.113 p. 794-804.
[38] Du, M., B. Guo, and D. Jia. 2010 Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59(5): p. 574-582.
[39] Gutteridge, W.A. and J.A. Dalziel. 1990 Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. A fine non-hydraulic filler. Cement and Concrete Research, 20(5): p. 778-782.
[40] Whiting, D.A. and M.A. Nagi. 2003 Electrical resistivity of concrete-a literature review. R&D Serial, 2457.
[41] Costa, A. and J. Appleton. 2002 Case studies of concrete deterioration in a marine environment in Portugal. Cement and Concrete Composites, 24(1): p. 169-179.