تأثیر ذوب و یخبندان سیکلی بر تحکیم پوزولانی خاک های آلوده به آلاینده فلز سنگین

نویسندگان
1 گروه مهندسی عمران-مکانیک خاک و پی، دانشگاه صنعتی شاهرود
2 دانشجوی دکترای مهندسی عمران-مکانیک خاک و پی، دانشکده فنی و مهندسی،
3 دانشگاه شاهرود
4 استاد گروه مهندسی عمران-مکانیک خاک و پی، دانشکده فنی و مهندسی،
چکیده
آلاینده‌های فلز سنگین علاوه بر ایجاد مشکلات ژئوتکنیکی، می‌تواند سبب به خطر انداختن سلامت محیط‌زیست و انسان شود. با افزایش جمعیت، پیشرفت تکنولوژی و به تبع آن افزایش آلاینده‌های فلز سنگین و نیز قرارگرفتن یک‌چهارم سطح زمین در مناطق سردسیر و لزوم طراحی و احداث بنا بر روی این خاک‌ها، مطالعه‌ی تأثیر ذوب و یخبندان بر روی خاک‌های رسی تثبیت شده در معرض ذوب و یخبندان ضروری به نظر می‌رسد. برای تثبیت و جامدسازی خاک‌های آلوده افزودنی‌های مختلفی به کار‌ رفته است که در این میان سیمان بواسطه سازگار بودن با مواد آلاینده و کارایی زیاد، دسترسی آسان و ارزان بودن مصالح، کاربردی‌تر می‌باشد. در پژوهش حاضر از سیمان برای تثبیت خاک آلوده به آلاینده فلز سنگین سرب در سیکل‌های مختلف ذوب و یخبندان استفاده شد. با توجه به اهمیت نشست در خاک‌های رسی بر روی نمونه‌های مورد آزمایش، آزمایش تحکیم انجام شد. همچنین با توجه به کاربرد فراوان بنتونیت در سایت‌های آلوده از نمونه‌ی رسی بنتونیت برای انجام مطالعات آزمایشگاهی استفاده شد. نتایج مطالعات انجام شده نشان می‌دهد که در اغلب مواقع سیکل بحرانی سیکل 7 می‌باشد. همچنین تثبیت با سیمان در شرایط مختلف پارامترهای مقاومتی از جمله تنش پیش‌تحکیمی خاک را 2 تا 8 برابر بهبود می‌بخشد. علاوه بر آن مقدار بهینه سیمان در نمونه‌های آلوده و غیرآلوده در سیکل‌های مختلف ذوب و یخبندان متغیر بوده، اما در اغلب نمونه‌ها حدود 5% تا 10% بوده است. در ادامه، بررسی بازدهی تثبیت و مطالعه تشکیل ترکیبات هیدراته سیمان و خاک رس با استفاده از آزمایش شیمیایی pH انجام شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Impact of cyclic freezing and thawing on the pozzolanic consolidation of heavy metal contaminated soils

نویسندگان English

Fatemeh Khosravi 1
Salahedin Hamidi 2
Seyed Morteza Marandi 4
1 Department of Civil Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Semnan, Iran.
2 PhD Candidate of Civil Engineering, Faculty of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
4 Professor of Civil Engineering, Faculty of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
چکیده English

Heavy metals are elements that exhibit metallic properties such as ductility, malleability, conductivity, cation stability, and ligand specificity. They are characterized by relatively high density and high relative atomic weight with an atomic number greater than 20. Clay and other soils may become contaminated by the accumulation of heavy metals and metalloids through emissions from the rapidly expanding industrial areas, mine tailings, disposal of high metal wastes, leaded gasoline and paints, land application of fertilizers, animal manures, sewage sludge, pesticides, wastewater irrigation, coal combustion residues, spillage of petrochemicals, and atmospheric deposition. Heavy metal contaminants in addition to geotechnical problems creation and change in the soil strength parameters especially in clay soils, can cause environmental and human health risks due to penetrate through the groundwater. Most commonly heavy metal found at contaminated sites are lead (Pb), chromium (Cr), arsenic (As), zinc (Zn), cadmium (Cd), copper (Cu), mercury (Hg), and nickel (Ni). Also, freezing and thawing cycles have a significant effects on the behavior of stabilized clay soils specially on the heavy metal contaminated clay soils stabilized by cement od other additives. So, by population increasing, advancement of technology and consequently increase in heavy metals emissions, as well as being a quarter of the earth surface in the cold regions and the necessity of building design and construction on these soils, it seems necessary to study the impact of the freezing and thawing cycles on the stabilized clay soils. Different additives such as cement, lime, gypsum, fly ash and other additives were used for stabilization and solidification of heavy metal and oily contaminated soils, the cement is more practical among the stabilizer additives, because of its compatibility with pollutants and high efficiency, low cost and easy access. In this research used cement for stabilization of the lead heavy metal contaminated soil exposed to freezing and thawing cycles. According to the importance of the soil settlement in the clay soils, one dimensional consolidation test was conducted on the experimental samples. Also, due to extensive use of bentonite clay soil in contaminated sites, bentonite clay sample was used for experimental studies. The results of this research indicate that in most cases the critical cycle is a cycle 7. Also, The soil strength parameters such as over-consolidation stress increased about 2 to 8 times in different conditions by cement stabilization. Also, stabilization of heavy metal contaminated by cement clay soils that exposed to freezing and thawing cycles reduce the Cc and Cs coefficients of bentonite clay samples about 50 to 80 percent depending on number of freezing and thawing cycles and heavy metal concentration in bentonite clay sample and also causing preconsolidation in soft clay soils or normally consolidated soils throug the pozzolanic reactions of soil and cement at a low time. Furthermore, the optimum content of cement in contaminated and uncontaminated samples in different freezing and thawing cycles is variable, but in most cases is about 5% to 10% depending on number of freezing and thawing cycles and heavy metal concentration in bentonite clay sample. In continence, stabilization efficacy and the formation of hydrated compounds of cement and clay soil was investigated by using pH chemical test.

کلیدواژه‌ها English

contaminated soil
Cement
freezing and thawing cycles
Bentonite
consolidation

[1]. Williams, AAB, Pidgeon, JT and Day, P. 1985. Problem Soils in South Africa– State-of-the-Art: Expansive Soils. The Civil Engineer in South Africa, pp 367-377.
[2]. Sasanian, s., 2011. The Behaviour of Cement Stabilized Clay At High Water Contents. PhD Thesis, University of Western Ontario, 287p.
[3]. Schwartz, K. 1985. Problem Soils in South Africa – State-of-the-Art: Collapsible Soils. The Civil Engineer in South Africa. July, pp. 379-393.
[4]. Ahmed, A., 2015. Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite. Appl. Clay Sci, 104, 27–35.
[5]. Rao, M. R., Rao, A. S., and Babu, R. D., 2008. Efficacy of cement-stabilized fly Ash cushion in arresting heave of expansive soils. Geotech Geol Eng., 26,189-197.
[6]. USEPA, 2004. Treatment Technologies for Site Cleanup: Annual Status Report (11th E.). EPA542-R-03-009. www.epa.gov.
[7]. Gismera, M.J., and Sevilla, M.T., 2012. Clayey materials as geologic barrier in urban landfills. Applied Clay Science, pp 23–29.
[8]. Howel, J. L., Shackelford, C. D., 1997. Hydraulic conductivity of sand admixture processed clay mixture. In: Proceedings of 14th international conference on soil mechanics and foundation engineering, Humburg, 1, 307-310.
[9]. Dixon, D. A., Gray, M. N., and Thomas, A. W., 1985. A study of the compaction properties of potential clay-sand buffer mixture for use in nuclear fuel waste disposal. Eng Geol., 21, 247-255.
[10]. Chapuis, R. P., 1990. Soil – bentonite liners: predicting permeability from laboratory tests. Canadian Geotechnical Journal, 27, 47-57.
[11]. Sofilić, T. et.al. 2012. The Significance of Iron and Steel Slang as by-product for Utilization in Road Construction. 12th International Foundrymen Conference, Opatija, Croatia.
[12]. Yarlagadda, P.S., Matsumoto, M.R., Van Benschoten, J.E., and Kathuria, A., 1995. Characteristics of heavy metal in contaminated soils. Journal of Geotechnical and Geoenvironmental Engineering, 121, 276-286.
[13]. Shi, C., and Jimenez, A.F., 2006. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. Journal of Hazardous Materials, 137, pp. 1656-1663.
[14]. Batchelor, B., 2006. Overview of waste stabilization with cement. Journal of Waste Management. 26, 689-698.
[15]. Pereira, C.F., Luna, Y., Querol, X., Antenucci, D., and Vale, J., 2009. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based. geopolymers Fuel, 88, 1185-1193.
[16]. Glasser, F.P., 1993. Chemistry of cement-solidified waste forms, Chemistry and microstructure of solidified waste forms. Spence, R.D. (Ed.), Lewis Publishers, p. 315.
[17]. Klich, I., Wilding, L.P., Drees, L.R., and Landa, E.R., 1999. Importance of microscopy in durability studies of solidified and stabilized contaminated soils. Soil Sci. Soc. Am. J., 63, 1274-1283.
[18]. Andersland O.B., Ladanyi B., 1994. An Introduction to Frozen Ground Engineering. Chapman & Hall, N.Y., pp. 352.
[19]. Viklander P., 1998. Laboratory study of stone heave in till exposed to freezing and thawing. Cold Regions, Science and Technology, 27, 141–152.
[20]. Eigenbrod K.D., Knutsson S., Sheng D., 1996. Pore water pressures in freezing and thawing fine-rained soils. Journal of Cold Regions Engineering, 10, 76–92.
[21]. Cruzda K.A., Hohmann M., 1997. Freezing effect on strength of clayey soils. Applied Clay Science, 12, 165–187.
[22]. Marion, G.M., 1995. Freeze-thaw processes and soil chemistry. Cold regions research & engineering laboratory, America.
[23]. Arabi, M., 1987. Frost resistance of lime stabilized clay soil. Ph.D, Thesis, University of South Glamorgan, Wales , UK.
[24]. Wang, D., Ma, W., Niu, Y., Chang, X., Wen, Z., 2007. Effect of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Regions Science and Technology, 48, 34-43.
[25]. Ouhadi, V.R., Yong, R.N., Amiri, M., Ouhadi, M.H., 2014. Pozzolanic consolidation of stabilized soft clays. Applied Clay Science, 95, 111-118.
[26]. Yong, R.N., 2000. Geo-environmental engineering, contaminated soils, pollutant fate and mitigation. CRC Press, p.307.
[27]. Yong, R. N. and Phadangchewit, Y., 1993. pH Influence on selectivity and retention of heavy metals in some clay soils. Can. Geotech. J., 30, 821-833.
[28]. Yong, R. N. and Warkentin, B. P. and Phadangchewit, Y. and Galvez, R., 1990. Buffer capacity and lead retention in some clay minerals. Water, Air, Soil, Pollution, J., 53, 53-67.
[29]. Ouhadi, V.R., and Amiri, M., 2011. Geo-environmental Behaviour of Nanoclays in Interaction with Heavy Metals Contaminant. Amirkabir J, Civil, 42(3), 29-36.
[30]. Yong, R. N. and Warkentin, B. P. and Phadangchewit, Y. and Galvez, R., 1990. Buffer capacity and lead retention in some clay minerals. Water, Air, Soil, Pollution, J., 53, pp. 53-67.
[31]. Lumsdon, D.G., Evans, L.J., Bolton, K.A., 1995. The influence of pH and chloride on the retention of cadmium, lead, mercury and zinc by soils. Journal of Soil Contamination, 4, pp. 137–150.
[32]. Yong, R. N. and Phadangchewit, Y., 1993. pH Influence on selectivity and retention of heavy metals in some clay soils. Can. Geotech. J., 30, pp. 821-833.
[33]. Taylor GS and Luthin JN, 1978. A model for coupled heat and moisture transfer during soil freezing. Canadian Geotechnical Journal, 15, 548-555.
[34]. Andersland OB and Anderson DM, 1978. Geotechnical Engineering for Cold Region. Mc Graw-Hill, New York.
[35]. Williams PJ and Perfect E, 1980. Investigation of thermally actuated water migration in frozen soils. Geotechnical Science Laboratories, Department of Geography, Carleton University, Ottawa, Canada.