استراتژی بهینه مقاوم‌سازی لرزه ای شریان های حیاتی وابسته با استفاده از مدل عدم عملکرد داده-ستانده دینامیکی با لحاظ عدم قطعیت

نویسندگان
1 دانشکده محیط زیست دانشگاه تهران
2 کارشناس ارشد مدیریت در سوانح طبیعی دانشکده محیط زیست دانشگاه تهران
چکیده
یکی از مهم ترین مسائلی که در تصمیم گیری های کلان مطرح است، اولویت بندی و تخصیص بودجه مقاوم سازی لرزه ای شریان های حیاتی است. هنگامی که استراتژی بهینه انتخاب گردد و تخصیص بودجه با اولویت بندی صحیح انجام شود، انتظار می رود که بیشترین کاهش خسارت حاصل گردد. در حالتی که منابع مالی محدود باشد، اولویت بندی مذکور از درجه اهمیت بالاتری برخوردار است. در این تحقیق با استفاده از مدل عدم عملکرد دینامیکی داده-ستانده، استراتژی بهینه مقاوم سازی شریان های حیاتی آب، حمل و نقل، برق، گاز و مخابرات در برابر زلزله از دیدگاه خسارات اقتصادی غیر مستقیم و حساسیت انتخاب شده است. بدین منظور از شاخص های کاهش خسارت اقتصادی نسبت به هزینه استراتژی و کاهش حساسیت نسبت به هزینه استراتژی و همچنین روش پارتو استفاده شده است. نتایج تحقیق نشان می دهد که افزایش 25 درصدی عملکرد لرزه ای شریان ها نسبت به وضعیت موجود استراتژی بهینه مقاوم‌ سازی از دیدگاه اقتصادی است. در این استراتژی شاخص های کاهش خسارت اقتصادی نسبت به هزینه اجرای استراتژی و کاهش حساسیت نسبت به هزینه اجرای استراتژی به ترتیب برابر 3996/0 و 66/3 می باشد. شایان ذکر است که در تمامی محاسبات اندرکنش اقتصادی میان شریان ها مدنظر قرار گرفته شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimal Selection of Seismic Retrofitting Strategy of Interdependent Infrastructures using Uncertainty Dynamic Inoperability Input-Output Model

نویسندگان English

Babak Omidvar 1
Sanam Moghimi 2
Saeed Kakaiee 2
چکیده English

Natural disasters and their impacts on human’s life are one of the most important concerns of our societies. Infrastructures such as power systems, water distribution systems, transportations, communication systems and gas networks are among the main components of urban environment. There are interdependencies among infrastructures and their subsectors. Infrastructures performance in disasters have significant role in reaching to a disaster resilient society. The uncertainty in vulnerability assessment of these lifelines in one hand and the lack of proper planning for recovery and selection of optimized strategies for different sectors on the other hand, may result in a great losses. Iran is located in a seismic active zone and has always been faced with devastating earthquakes. Tehran, the capital of Iran, is at seismic risk, since it sits on major active faults and suffers from techtonic activities. However, poor construction practices, and having large population, makes Tehran more vulnerable to earthquakes. Accordingly, it becomes necessary to have proper recovery plan beforehand based on accurate seismic performance modeling of interconnected infrastructures. Optimal financial resource allocation to the seismic retrofitting of the infrastructures and specifying their priority are considered as prominent issues in the macro scale decision making process. As the optimum strategy is adopted and the budget allocation is performed with the appropriate priority, it is expected that a significant loss reduction is achieved. When the financial resources are limited, allocating based on the proper priority seems to be more vital. The study tries to find out the economic effect of infrastructures’ interdependencies using Leontief Input-Output Model based on the matrix of value of commodity flow among different sectors. Tehran is chosen as a case study. In this work, the optimum strategy for retrofitting the infrastructure networks as the water, transportation, communication, gas, and power infrastructures is investigated using Uncertainty Dynamic Inoperability Input-Output Model (U-DIIM). This optimum strategy is adopted against the earthquake impacts in terms of the indirect economic losses, sensitivity to the parameters of the commodity flow matrix and cost of retrofitting strategy. Therefore, the indices employed in this research include reducing the economic losses and also the sensitivity with respect to the costs associated with the conduction of the strategy. By minimizing the total economic loss, sensitivity to economic loss parameters and cost of implementation of strategies, the best optimal scenario is selected for retrofitting strategy. The strategy selection is based on initial inoperability, recovery time and demand perturbation after earthquake. The Pareto method is also used in this work to select the optimal retrofitting strategy. The results reveal that increasing the seismic performance of the infrastructures by 25% is the optimum retrofitting strategy from the economic point of view. Following this strategy, the ratio of economic loss reduction to the strategy implementation costs and also the ratio of the sensitivity reduction to the strategy implementation costs are 0.3996 and 3.66, respectively. It is worthwhile to note that all economic interactions between the infrastructures are taken into account in the research. The proposed methodology may be used for the optimal selection of the other set of infrastructures in an uncertain situation.

کلیدواژه‌ها English

infrastructure
Earthquake
Retrofitting
U-DIIM
Prioritizing retrofitting strategy
[1] Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability engineering & System safety, 121, 43-60.
[2] Tavakoli Sani M. S. (2011). Study of interdependency between lifeline networks using Graph Theory and I-O Leontief Matrix, A Thesis submitted for the degree of Master of Science in Natural Disaster Management, Faculty of Environment, University of Tehran (in Persian).
[3] Hojjati Malekshah M. (2010). Seismic Performance Analysis of Critical Infrastructures considering Interaction Effects, A Thesis submitted for the degree of Master of Science in Natural Disaster Management, Faculty of Environment, University of Tehran (in Persian).
[4] Naeimi.M, (2010). Application of Fault Tree and Shortest Path Method Algorithm in Studying seismic interaction of lifelines, case study: power and water networks, A Thesis submitted for the degree of Master of Science in Natural Disaster Management, Faculty of Environment, University of Tehran (in Persian).
[5] Haimes, Y.Y., (2009). Risk Modeling, Assessment, and Management. 3rd Edition. John Wiley & Sons.
[6] Haimes et al., Y. (2007). Analysis of Interdependencies and Risk in Oil & Gas Infrastructure Systems. Virginia: Cebter for Risk Management of Engineering Systems.
[7] Panzieri, S., Setola, R., and Ulivi, G. (2005). An approach to Model Complex Interdependent Infrastructures. 16th IFAC World Congress, Czech Republic.
[8] Omidvar, B., Hojjati Malekshah, M. H., & Omidvar, H. (2014). Failure risk assessment of interdependent infrastructures against earthquake, a Petri net approach: case study—power and water distribution networks. Natural hazards, 71(3), 1971-1993.
[9] Eskandari, M., Omidvar, B., Tavakoli Sani, M. S. (2015), Loss estimation of interdependent infrastructures in targeted attacks, Journal of Emergency Management, 3( 93) , 19-30(in Persian).
[10] Naeimi, M., & Omidvar, B. (2013), Calculation of electric power effect on water network, Journal of Emergency Management, 1( 2) , 17-33 (in Persian).
[11] Rose, Adam; Benavides, J; Chang S.E.; Szczesniak, P and Lim,D. (1997). The regional Economic Impact of an Earthquake: Direct and Indirect Effects of Electricity Lifeline Disruptions. Journal of Regional Science. 37(3): 437-458.
[12] Federal Emergency Management Agency (1999). HAZUS 99 Technical Manual. Washington D.C.: Federal Emergency Management Agency (FEMA).
[13] Chang, S.E.; Shinozuka, Masanobu and Moore, James E. II (2000). Probabilistic earthquake scenarios: extending risk analysis methodologies to spatially distributed systems. Earthquake Spectra .16(3): 557-572.
[14] Shinozuka, M.; Rose, A. and Eguchi, R.T. (1998). Engineering and Socioeconomic Impact of Earthquake –an analysis of electricity lifeline disruptions in the New Madrid area- (MCEER Monograph Series 2). Buffalo, NY: Multidisciplinary Center for Earthquake Engineering Research.
[15] Percoco. (2006). A note on the inoperability input-output model. Risk Analysis.
[16] Leontief, W. (1936). Quantitative input and output relations in the economic system of the United States, Review of Economics and Statistics, 18(3): 105-125.
[17] Leontief, W. W. (1966). Input-output economics, Oxford University Press, New York.
[18] Haimes, Y.Y., and Jiang, P. (2001). Leontief-based model of risk in complex interconnected infrastructures, ASCE Journal of Infrastructure Systems, 7(1): 1-12.
[19] Haimes, Y. Y., Horowitz, B. M., Lambert, J. H., Santos, J. R., Crowther, K., and Lian, C. (2005). “Inoperability input-output model for interdependent infrastructure sectors. I: Theory and methodology.” J. Infrastruct. Syst., 11_2_, 67–92.
[20] Lian, C., and Haimes, Y. Y. (2006). “Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input-output model.” Syst. Eng., 9_3_, 241–258.
[21] Anderson, C.W., J.R. Santos, and Y.Y. Haimes; A risk-based input-output methodology for measuring the effects of the August, (2003) Northeast Blackout; Economic Systems Research; 19(2), 2007, 183-204.
[22] Barker, K. A. (2009). Uncertainty Analysis of Interdependencies in Dynamic Infrastructure Recovery: Applications in Risk-Based Decision Making. JOURNAL OF INFRASTRUCTURE SYSTEMS, ©ASCE.
[23] Dorfman, R.(1973). “Wassily Leontief’s contribution to economics.” Swed. J. Econ., 75_4_, 430–449.
[24] JICA, C. (2000). The study on seismic microzoning of the Greater Tehran Area in the Islamic Republic of Iran. Pacific Consultants International Report, OYO Cooperation, Japan.
[25] TAKADA, S. (2004). DISLOCATION AND STRONG GROUND MOTION ZONING UNDER SCENARIO FAULTS FOR LIFELINES. 13th World Conference on Earthquake Engineering, (Paper no.12, Vancouver.
[26] Moghimi S. (2010). Optimal Selection of Recovery Strategies after Earthquakes considering the Interdependencies of Infrastructure Using Dynamic Leontief Input Output Model, A Thesis submitted for the degree of Master of Science in Natural Disaster Management, Faculty of Environment, University of Tehran (in Persian).
[27] Central Bank of the Islamic Repuplic of Tehran (2014). Input-Output Tables of Iran Economy in 2004, Economic Research and Policy Department