تأثیر زبری نواری مستطیلی برمشخصات پرش هیدرولیکی در مقاطع مستطیلی واگرا با استفاده از نرم افزار FLOW-3D

نویسندگان
1 دانشگاه رازی، گروه سازه های هیدرولیکی، دانشجوی کارشناسی ارشد
2 دانشگاه رازی، گروه مهندسی عمران ، استادیار
3 دانشگاه تهران، گروه سازه های آبی، دانشجوی دکتری
چکیده
یکی از سازه های متداول جهت استهلاک انرژی جریان های پر سرعت ، حوضجه آرامش می باشد. بررسی محققین نشان می دهد که واگرایی و زبری های مصنوعی حوضچه های آرامش هر یک باعث کاهش نسبت عمق ثانویه به اولیه ، طول پرش و افزایش افت نسبی انرژی نسبت به پرش کلاسیک می شود. در این تحقیق با استفاده از نرم افزار FLOW-3D و مدل های آشفتگی k-ԑ استاندارد و RNG k-ԑ شبیه سازی عددی پرش هیدرولیکی در مقاطع مستطیلی واگرا انجام شد و با نتایج بدست آمده از بررسی های آزمایشگاهی مورد مقایسه قرار گرفت، در ادامه اثرات زبری نواری مستطیلی بر مشخصات پرش هیدرولیکی مورد ارزیابی قرار گرفت. نتایج نشان داد که مدل آشفتگی k-ԑ استاندارد برای پیش بینی پروفیل سطح آب در پرش هیدرولیکی در مقاطع مستطیلی واگرا مناسب بوده و انطباق قابل قبولی دارد. بررسی ها نشان می دهد ایجاد زبری نواری مستطیلی، باعث کاهش عمق ثانویه حوضچه واگرای زبر به اندازه 63/24درصد و کاهش طول پرش هیدرولیکی به اندازه 64/17 درصد و افزایش افت نسبی انرژی به اندازه 46/14 درصد نسبت به پرش کلاسیک شده است. به نحوی که استفاده از این زبری حوضچه آرامش را اقتصادی تر خواهد نمود.

کلیدواژه‌ها


عنوان مقاله English

Effect of Rectangular Strip Roughness on Hydraulic Jump Characteristic in Diverging Rectangular Sections With FLOW-3D Software

چکیده English

The hydraulic jump phenomenon is one of the most common phenomena in open channels. Hydraulic jump is a transition state from supercritical to subcritical flow regime, which normally occurs in conjunction with hydraulic structures, such as spillways, weirs, and sluice gates. A hydraulic jump phenomenon serves a variety of purposes, for instance, to dissipate the energy of flow to prevent bed erosion and aerate water or to facilitate the mixing process of chemicals used for the purification of water. Stilling basins are one of the most common structures for energy dissipation of flow with high velocities.The stilling basin has been accepted to be the most powerful hydraulic structure for the dissipation of the flow energy. The size and geometry of the stilling basin affect the formation of flow patterns, which can be influential for hydraulic performance of the whole system. The depth of water after the jump is related to the energy content of the flow, and any reduction in energy content with increased energy dissipation in the jump will reduce the required depth of flow after the jump. Sometimes these basins are supplied with appurtenances that increase the overall roughness of the basins. This in turn increases the energy dissipation, decreases the sequent depth, and requires a shorter basin for the full development of the hydraulic jump. There are plenty of research studies in the literature regarding the classical hydraulic jump in the usual rectangular straight stilling basin, but less for the hydraulic jump in other cross section shape of basins. Expanding gradually basin with the rectangular cross section acts as two separate hydraulic structures including stilling basin and transition. In this type of structures not only the transition can be eliminated, but the length of the basin will be also much smaller than what is designed for the usual straight basins. Researchers’ studies show that divergence in stilling basins reduce the sequent depth and the length of the jump while increasing the energy losses compared to the classic jumps.
In this research, numerical simulation of the hydraulic jump was performed in divergence rectangular sections, and compared with the results of the laboratory, making use of the FLOW-3D software and the standard k-ԑ and RNG k-ԑ turbulence models. The effects of rectangular Strip roughness on the specification of hydraulic jump were evaluated.
The results showed that the standard k-ԑ turbulence model was able to predict the water level profiles in the hydraulic jump in divergence rectangular sections with appropriate and acceptable coincidence. Results showed that the mean relative error of water surface obtained from numerical model and measured values is about 3.55 percent. Also the numerical model showed the vortices that were accrued because of diverging walls as well as experiment investigations. The results show that creating the rectangular Strip roughness, reduces the sequent depth as much as 13.65 % and the length of the hydraulic jump as much as 11.39%, while increasing the energy loss as much as 9.12%, compared to Smooth divergent stilling basin. The results also show that creating the rectangular Strip roughness, reduces the sequent depth as much as 24.63 % and the length of the hydraulic jump as much as 17.64%, while increasing the energy loss as much as 14.46%, compared to the classic hydraulic jumps. Consequently, the use of roughness in stilling basins would be economical.

کلیدواژه‌ها English

Diverging Hydraulic Jump
Rectangular strip roughness
k-ԑ Turbulence model
FLOW-3D software
1) Ead SA and Rajaratnam N, 2002. Hydraulic jumps on corrugated bed. Journal of Hydraulic Engineering ASCE 128: 656-663.
2) Morris H.M. 1995. A new concept of flow in rough conduits Transaction. American society of Civil Engineers, 120:373-398.
3) Tokyay N.D. 2005. Effect of channel bed corrugations on hydraulic jumps. In: Impacts of Global Climate Change Conference, EWRI, May, Anchorage, Alaska, USA, 408-416.
4) Abbaspour.A, Hosseinzadeh Dalir.A, Farsadizadeh.D, and  Sadraddini.AA.1388. "Effect of Sinusoidal Corrugated Bed on Hydraulic Jump Characteristics".Water and Soil Science Journal. Volume 19, No 1: 14-26.(In Persian)
5) Gohari A., and Farhoudi J. 2009. The characteristics of hydraulic jump on rough bed stilling basins. 33rdIAHR Congress. Water Engineering for a Sustainable Environment, Vancouver, British Columbia, pp.1-9.
6) Elsebaie, I. H., and Shabayek, Sh. (2010). Formation of hydraulic jumps on corrugated beds. Civil & Environmental Engineering, Vol. 11, No. 1, 01-21.pp.37-47.
7) Hossam  M , Mohamed M , Ahmed M , Abdel Azim M , Fahmy Salah F. 2014. Minimizing downstream scour due to submerged hydraulic jump using corrugated aprons. Ain Shams Engineering Journal 5, 1059–1069.
8) Hossam  M , Mohamed  E.G , Ahmed M , Abdel Azim M , Fahmy Salah F. 2014. Effect of corrugated beds on characteristics of submerged hydraulic jump . Ain Shams Engineering Journal  5, 1033–1042.
9) Daneshfaraz.R, Roouhy. Jafar, Roouhy Javad.1392"Numerical Investigation of the effect of changing the divergence angle of the stilling basin on hydraulic jump characteristic with flow-3d software". Seventh National Congress of Civil Engineering, 17 and 18 May, Faculty of martyr Nikbakht, Zahedan. (In Persian)
10) SahebiVayghan.F, Farsadizadeh.D, EsmaeiliVaraki.M, Abbaspour.A, Hosseinzadeh Delir.A.1392."A Comparison of using K- Turbulence Models in Simulating Hydraulic Jumpin Diverging Rectangular Sections with Fluent Software". Journal of Water and Soil. Vol 27)1).235-246. (In Persian)
11) Chern M. J., Syamsuri. S. 2013. Effect of Corrugated Bed on Hydraulic Jump Characteristic Using SPH Method . Journal of Hydraulic Engineering 139:221-232.
12) Ebrahimi S., Salmasi F ., Abbaspour A ., 2013. Numerical Study of Hydralic Jump on Rough Beds Stilling Basins. Journal of Civil Engineering and Urbanism, Vol3, No.1, pp. 19-24.
13) Bayon A, Valero D, Bartual R.G, Moran F.J.V, Jimenez.A.L,.2016. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software 80 . 322-335.
14) Omid M.H., Esmaeili Varaki M., and Narayanan R. 2007. Gradually expanding hydraulic jump in a trapezoidal channel. Journal of Hydraulic Research, (4): 512–518.
15) Bakhtiari.M, Kashefipour.M.1387."Investigation of Hydraulic Jump Characteristics in Divergent Sections". Fourth National Congress of Civil Engineering.Tehran University,17 to 19 May. (In Persian)
16) Kasi .A, Esmaeili Varaki .M, Farhoudi .J.1390." Study laboratory of Diverging hydraulic jump Characteristics With an Adverse Slope". Sixth National Congress of Civil Engineering . Semnan University, 6 and 7 May. (In Persian)
17) Shojaeian.Z, Hosseinzadeh Dalir.A, Farsadizadeh.D, Salmasi.F.1390."Investigation of Hydraulic Jump Characteristics in Divergent Rectangular Sections on Inverse Slope". Journal of Water and Soil. Vol 3)21).50-60. (In Persian)
18) Gord Noshahri..A, Omid M.H, Kochakzadeh.S.  .1388. "Experimental study of sill-controlled hydraulic jump in a gradually diverging basin". Iran Water Research Journal. Vol 3(4).31-39. (In Persian)