مدل سازی و بهینه سازی حذف سریع 2-متیل پروپان-2-تیول از خاک آلوده با استفاده از روش فنتون اصلاح شده

نویسندگان
1 پژوهشگر مرکز تحقیقات محیط زیست دانشگاه صنعتی سهند تبریز
2 استاد دانشگاه صنعتی سهند تبریز و رئیس مرکز تحقیقات مهندسی محیط زیست
3 رییس دانشکده مهندسی شیمی دانشگاه صنعتی سهند تبریز
چکیده
در این تحقیق، از روش فنتون اصلاح شده برای رفع آلودگی خاک آلوده به 2-متیل پروپان-2-تیول استفاده شده است. روش طراحی ترکیب مرکزی به‌منظور بررسی اثرات فاکتورهای مورد بررسی مشتمل بر غلظت اولیه پراکسید هیدروژن (w/v%)، نسبت وزنی FeSO4 به خاک (w/w) و نسبت زمان هم‌زدن مخلوط به کل زمان رفع آلودگی (%) و برهم کنش میان آنها مورد استفاده قرار گرفت.
تحلیل واریانس و آنالیز پارتو نتایج آزمایش‌ها نشان داد که با غلظت اولیه 64690 جزء در میلیون جزء آلودگی به ترتیب فاکتورهای نسبت زمان هم زدن مخلوط به کل زمان رفع آلودگی، غلظت اولیه پراکسید هیدروژن و نسبت وزنی FeSO4 به خاک بر میزان رفع آلودگی خاک آلوده به 2-متیل پروپان-2-تیول موثر هستند. همچنین برهم کنش فاکتورهای غلظت اولیه پراکسید هیدروژن و نسبت وزنی FeSO4 به خاک بر نتایج رفع آلودگی موثر شناخته شد.
مقدار P برای فقدان برازش (062/0) ناشی از تحلیل واریانس نشان داد که مدل پیشنهاد شده به خوبی می‌تواند نتیجه اثر فاکتورها بر آلودگی‌زدایی را با دقت خوبی پیش‌بینی نماید (%12/95=R2).
علاوه بر این، شرایط بهینه پیشنهاد شده برای حداکثر بازدهی رفع آلودگی 2-متیل پروپان-2-تیول نشان داد که برای حصول چنین شرایطی باید فاز دوغابی تا حد ممکن مخلوط گردد و یک مقدار بهینه از غلظت پراکسید هیدروژن و سولفات آهن(II) در بازه آزمایشگاهی مورد نظر بکار گرفته شود.
با استفاده از روش ترکیب مرکزی برای حداکثر بازدهی آلودگی‌زدایی مقدار 084/94 درصد پیش‌بینی شد که انطباق خوبی با نتیجه آزمایش در شرایط بهینه دارد (412/94 درصد).

کلیدواژه‌ها


عنوان مقاله English

Modeling and optimization of fast degradation of contaminated soil with 2-methylpropane-2-thiol by modified Fenton process

نویسندگان English

Pejman Roohi 1
Esmaeil Fatehifar 2
Esmaeil Fatehifar 2
Reza Alizadeh 3
1 Researcher in environmental Engineering Research center
2 Head of Environmental Engineering Research Center
3 Head of chemical engineering department
چکیده English

The pollution of soil with 2-methylpropane-2-thiol as an odorant hydrocarbon is an environmental problem. It also causes secondary impacts such as social dissatisfaction and economic problems due to tourist revenue reduction. 2-methylpropane-2-thiol is a hazardous material and remediation of soil polluted by this material with a fast method is important to study.
In this study, modified Fenton treatment is investigated for oxidation of 2-methylpropane-2-thiol. Central Composite Design (CCD) based on Response Surface Methodology (RSM) was used to obtain appropriate effects of the main factors (initial H2O2 concentration, FeSO4 to soil ratio and stirring time interval percentage) and their interactions on the removal efficiency. Treatments were set up to monitor 2-methylpropane-2-thiol removal efficiency for initial contaminant concentration of 64690 part per million by weight. Samples were analyzed by gas chromatograph equipped with FID and TCD detector and HP-Plot Q column. Design of experiment in the three-factor with five-level matrix include 20 experiment. Randomization technique is used to guard against unknown and uncontrolled factors as lurking nuisance factors. Moreover, blocking technique is used for investigation of probable effect of initial soil temperature on results.
Analysis of variance and Pareto analysis show that all main factor are effective. Also, stirring time interval percentage was the most influential factors on 2-methylpropane-2-thiol removal efficiency. Results of the experiments shows that at low concentration levels removal efficiency increases with hydrogen peroxide concentration up to the certain level. For higher concentration of hydrogen peroxide concentration, the removal efficiencies decreased which could be due to scavenging. Also, increasing in FeSO4:Soil ratio increases removal efficiency up to the certain level because Fe2+ is an alternative to enable more extensive and greater contaminant oxidation; however a greater ratio (greater than 0.0040) causes decrease in the removal efficiency. This phenomena could be due to side reactions which affect reactive radicals such as OH• radicals. Furthermore, investigation of the results demonstrates that 2-methylpropane-2-thiol removal efficiency rises with increasing stirring time interval percentage. This phenomena could be due to uniform distribution of oxidation agent and Fe2+ and better desorption of contaminant from soil to liquid phase.
Moreover, based on analysis of variance, the interaction between hydrogen peroxide and FeSO4: Soil ratio was significant with positive effect on the removal efficiency. This interaction could be the result of reaction between H2O2 and Fe2+. By considering main and interaction effects, with the raising H2O2 and Fe2+ concentration up to a certain level, the removal efficiency increase and with further concentration increasing the removal efficiency will be dropped. Analysis of variance indicate that initial soil temperature (21 and 25 0C) were not effective factors during the time interval of the experiments which could be due to the exothermic reaction between hydrogen peroxide, FeSO4 and contaminant. P-value of lack-of-fit (0.064) indicates that suggested model adequately fits the data with good correlation coefficient (R2=95.12%). Optimum condition suggested for maximum 2-methylpropane-2-thiol removal efficiency (94.412%) shows that concentration of H2O2 and Fe2+ ion must be at the certain level and maximum stirring time for remediation in the studied intervals.
CCD model predict 94.084% for the removal efficiency at optimum condition which is good agreement with the predicted value.

کلیدواژه‌ها English

"2-methylpropane-2-thiol"
"Quadratic mathematical model"
"Analysis of variance"
"remediation"
[1] Karthikeyan R, Hutchinson SLL, Erickson LE. Biodegradation of Tertiary Butyl Mercaptan in Water. Journal of Bioremediation and Biodegradation; 2012;3.
[2] Behbod B, Parker EM, Jones EA, Bayleyegn T, Guarisco J, Morrison M, et al. Community health assessment following mercaptan spill: eight mile, Mobile County, Alabama, September 2012. Journal of Public Health Management and Practice 2014;20:632-639.
 [3]  Darban A, Ganjdoust H, Salehian E, Khodadadi A. Factors Affecting Site Remediation of diesel contaminated soils using surfactants. OIDA International Journal of Sustainable Development 2013; 6(5):39-46.
[4] Gan S, Ng HK. Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Chemical Engineering Journal 2012;180:1-8.
[5] Watts RJ, Teel AL. Chemistry of Modified Fenton’s reagent (catalyzed H2O2 propagations–CHP) for in situ soil and groundwater remediation. Journal of Environmental Engineering 2005;131:612-622.
[6] Gan S, Ng HK. Modified Fenton oxidation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils and the potential of bioremediation as post-treatment. Science of the Total Environment 2012;419:240-249.
[7] Nam K, Rodriguez W, Kukor JJ. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 2001;45:11-20.
[8] Yap CL, Gan S, Ng HK. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 2011;83:1414-1430.
[9] Palmroth M, Langwaldt J, Aunola T, Goi A, Münster U, Puhakka J, et al. Effect of modified Fenton’s reaction on microbial activity and removal of PAHs in creosote oil contaminated soil. Biodegradation 2006;17:29-39.
[10] Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chemical Engineering Journal 2016;284:582-598.
[11] Xu J, Huang F, Wang W, Cui Y, Zhang J, Li X. Selectivity for modified Fenton's oxidation of crude oil in soils. Toxicological & Environmental Chemistry 2016;98:500-510.
[12] Manzano M, Perales J, Sales D, Quiroga J. Catalyzed hydrogen peroxide treatment of polychlorinated biphenyl contaminated sandy soils. Water, Air, and Soil Pollution 2004;154:57-69.
[13] Watts RJ, Haller DR, Jones AP, Teel AL. A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton's reactions. Journal of Hazardous Materials 2000;76:73-89.
[14] Kulik N, Goi A, Trapido M, Tuhkanen T. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. Journal of Environmental Management 2006;78:382-391.
[15] Miao Z, Gu X, Lu S, Dionysiou DD, Al-Abed SR, Zang X, et al. Mechanism of PCE oxidation by percarbonate in a chelated Fe(II)-based catalyzed system. Chemical Engineering Journal 2015;275:53-62.
[16] Pardo F, Rosas JM, Santos A, Romero A. Remediation of soil contaminated by NAPLs using modified Fenton reagent: application to gasoline type compounds. Journal of Chemical Technology & Biotechnology 2015;90(4):754-764.
[17] Tsai T, Kao C, Surampalli RY, Liang S. Treatment of fuel-oil contaminated soils by biodegradable surfactant washing followed by Fenton-like oxidation. Journal of Environmental Engineering 2009;135:1015-1024.
[18] Gan S, Ng HK. Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils. Chemical Engineering Journal 2012;213:295-317.
[19] Sun H-w, Yan Q-s. Influence of pyrene combination state in soils on its treatment efficiency by Fenton oxidation. Journal of Environmental Management 2008;88:556-563.
[20] Kalainesan S, Erickson L, Hutchinson S, Urban J, Karthikeyan R. Transformation of tertiary butyl mercaptan in aerobic environments. Environmental Progress 2006;25:189-200.
[21] Smidt M, Kusic H, Juretic D, Novak Stankov M, Ukic S, Bolanca T, et al. Modeling Photo-oxidative Degradation of Aromatics in Water. Optimization Study Using Response Surface and Structural Relationship Approaches. Industrial & Engineering Chemistry Research 2015;54:5427-5441.
[22] Prabhakaran D, Kannadasan T, Thirumarimurugan M, Chellamboli C. Experimental Studies on Electrochemical and Photo Oxidation of Effluent Containing Ethyl Benzene and Optimization Using RSM. International Journal of Bioscience, Biochemistry and Bioinformatics 2012;2:369.
[23] Mokhtarani N, Yasrobi SY, Ganjidoust H. Optimization of Ozonation Process for a Composting Leachate-Contaminated Soils Treatment Using Response Surface Method. Ozone: Science & Engineering 2015;37:279-286.
[24] Hazime R, Nguyen Q, Ferronato C, Huynh T, Jaber F, Chovelon J-M. Optimization of imazalil removal in the system UV/TiO2/K2S2O8 using a response surface methodology (RSM). Applied Catalysis B: Environmental 2013;132:519-26.
[25] Long A, Zhang H, Lei Y. Surfactant flushing remediation of toluene contaminated soil: Optimization with response surface methodology and surfactant recovery by selective oxidation with sulfate radicals. Separation and Purification Technology 2013;118:612-9.
 [26] Montgomery DC, Runger GC. Applied statistics and probability for engineers: John Wiley & Sons; 2010; 682
[27] Aghaeinejad-Meybodi A, Ebadi A, Shafiei S, Khataee A, Rostampour M. Degradation of antidepressant drug fluoxetine in aqueous media by ozone/H2O2 system: process optimization using central composite design. Environmental Technology 2015;36:1477-1488.
[28] Aghaeinejad-Meybodi A, Ebadi A, Shafiei S, Khataee AR, Rostampour M. Modeling and optimization of antidepressant drug Fluoxetine removal in aqueous media by ozone/H2O2 process: Comparison of central composite design and artificial neural network approaches. Journal of the Taiwan Institute of Chemical Engineers 2015;48:40-48.
[29] Ahmadi R, Khodadadi Darban A. Modeling and Optimization of Nano-bubble Generation Process Using Response Surface Methodology. International Journal of Nanoscience and Nanotechnology 2013;9:151-162.
[30] Kahforoushan D, Bezaatpour J, Fatehifar E. Effect of