بررسی رفتار لرزه‌ای دیوارهای برشی بتن آرمه با المان مرزی فولادی متداول در ایران

نویسندگان
دانشگاه قم
چکیده
دیوارهای برشی مرکب با المان مرزی فولادی به عنوان اعضای سازه‌ای شناخته می‌شوند که قادرند در مقابل نیروی جانبی درون صفحه‌ای بالا و در سطوح کم تغییر مکان ایستادگی کنند. دیوارهای برشی بتن آرمه با المان مرزی فولادی که در ایران اجرا می‌شود در قسمت المان مرزی معمولا از طریق صفحه ستون و بولت به فونداسیون متصل می‌شوند. اکثر آیین‌نامه‌های معتبر دنیا در مورد رفتار این نوع از دیوارهای برشی سکوت کرده‌اند و تاکنون بر روی رفتار این نوع از دیوارهای برشی مطالعه آزمایشگاهی یا تحلیلی صورت نپذیرفته است.
در این مقاله اثر سطح مقطع بولت‌های متصل کننده صفحه ستون به فونداسیون و مدفون شدگی آرماتورهای طولی ناحیه المان مرزی دیوار در فونداسیون و تاثیر آن بر رفتار این نوع از دیوارهای برشی مورد مطالعه قرار گرفته است. ابتدا مدلسازی نمونه‌های معیار به روش اجزاء محدود انجام شده و درستی نتایج آن با نمونه‌های آزمایشگاهی مورد اعتبار سنجی قرار گرفته است. در این تحقیق از روش آنالیز اجزای محدود غیر خطی بتن آرمه و مدل آسیب دیدگی خمیری بتن برای مدلسازی رفتار بتن استفاده شده است. نتایج این مطالعه نشان می‌دهد افزایش سطح مقطع بولت و همچین مدفون شدن آرماتورهای طولی المان مرزی در فونداسیون باعث بهبود باربری این دیوارها می‌شود. مقاومت این دیوارها تحت بارهای محوری معمول کمتر از دیوار برشی بتن آرمه می‌باشد.

کلیدواژه‌ها


عنوان مقاله English

Behavior assessment of common shear walls in iran with steel boundary element

نویسندگان English

Ehsan Dehghani
S. Mahdi Allameh Najafi
S. Ali Allameh Najafi
University of Qom
چکیده English

Abstract:
Composite construction in steel and concrete offers significant advantages for use as the primary lateral resistance systems in building structures subjected to seismic loading. While composite construction has been common for over half a century through the use of composite beam and joist floor systems, over the past decade a substantial amount of research has been conducted worldwide on a wide range of composite lateral resistance systems. These systems include unbraced moment frames consisting of steel girders with concrete-filled steel tube (CFT) or steel reinforced concrete (i.e., encased steel sections, or SRC) beam-columns; braced frames having concrete-filled steel tube columns; and a variety of composite and hybrid wall systems.
Structural walls are widely used in building structures as the major structural members to provide substantial lateral strength, stiffness, and the inelastic deformation capacity needed to withstand earthquake ground motions. In recent years, steel reinforced concrete (SRC) walls have gained popularity for use in high-rise buildings in regions of high seismicity. SRC walls have additional structural steel embedded in the boundary elements of the reinforced concrete (RC) walls. Walls with additional shapes referred as composite steel-concrete shear walls, contain one or more encased steel shapes, usually located at the ends of the wall.
Composite shear walls with steel boundary element are known as the structural members able to withstand high in-plane lateral forces at low displacement levels. Reinforced concrete shear walls with steel boundary element being performed in Iran are joined to the foundation, in boundary element section, usually through bolts and base plates. Most reliable codes of the world have nothing to say about the behavior of this type of shear walls, and no experimental studies or analyses have been conducted on the behavior of this type of shear walls. In the past decade, great effort has been devoted to the study of seismic behavior of SRC walls, for Design provisions for SRC walls have also been included in some leading design codes and specifications, for example, AISC 341-10 , Eurocode 8, and JGJ 3-2010
Exposed baseplates together with anchor bolts are the customary method of connection of steel structures to the concrete footings . In this paper, the influence of cross section of base plate’s joint bolts to the foundation and the wall’s longitudinal bars embedding within the area of boundary element in the foundation, on the behavior of this type of shear walls have been investigated. The finite element software is first calibrated and the accuracy of its results is validated through modeling the experimental samples. In this research, the concrete’s nonlinear finite element analysis method and concrete damage plasticity model have been used for the concrete’s behavior modeling. The results show that increasing in the level of bolt’s cross section and also the embedding of longitudinal bars of boundary element in the foundation cause an improvement of the capacity of these walls. However, these walls’ resistance against the normal axial loads is considered to be less than reinforced concrete shear wall.

Keywords: Reinforced concrete shear wall, Steel boundary element, Concrete damage plasticity model, Finite element model.

کلیدواژه‌ها English

Reinforced concrete shear wall
Steel boundary element
Concrete damage plasticity model
Finite element model
[1] Dan, D., Fabian, A., and Stoian,V.; "Theorical and experimental study on composite steel-concrete shear walls with vertical steel encased profiles"; Constructional Steel Research; 2011; pp. 800-813.
[2] AISC.341-10; "Seismic Provisions for Structural Steel Buildings"; Chicago: American Institute of Steel Construction; 2010.
[3] CEN. Final Draft of EuroCode 8; "Design Provisions for Earthquake Resistance part 1 :General Rules"; Seismic Actions and Rules for buildings; Bruxells: European Commitee Standardization; 2003.
[4] JGJ. Technical specification for concrete structures of tall building (JGJ 3–2010); Beijing: China Ministry of Construction; 2011 (in Chinese).
 [5] Ji, X.,  Qian, J., and Jiang, Z. "Seismic behavior of steel tube-reinforced concrete composite wall"; Steel & Composite Structures. In: Proceedings of the 4-th international conference; 2010; pp. 185-90.
[6] Hossain, A.K.M., and Wright, H.D. "Experimental and theoretical behavior of composite walling under in-plane shear"; J Construct Steel Res; 2004; pp. 59-83.
[7] Qian, J., Jiang, Z., and Ji, X. "Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading"; Engineering Structures; 2012; pp. 173-184.
[8] Han, L.H., Tao, Z., and Wang, W.D. "Advanced composite and mixed structures-testing, theory and design approach"; Beijing: China Science Press; 2009.
 [9] Xia, H.Q., and Liu, J.X. "Application and structural analysis of shear wall connected with rectangular concrete-filled steel tube columns." Building Structure; 2005; pp. 8-16 [in Chinese].
[10] Esaki, F., and Ono, M. "Effect of loading rate on mechanical behavior of SRC shearwalls"; Steel Compos struct; Vol. 1; No.2; 2001; pp. 201-212.
[11] Tong, X., Hajjar, J.F., Schultz, AE., and Shield, CK. "Cyclic behavior of steel frame structures with composite reinforced concrete infill walls and partially-restrained connections"; Journal of Constructional Steel Research; Vol. 61; NO.4; 2005; pp. 531-552.
[12] Mostofinejad, D., and Anaei, M. "Effect of confining of boundary of elements of slender RC shear wall by FRP composites and stirrups"; Engineering Structures; Vol. 41; No.8; 2012; pp. 1-13.
 [13] Ma, H., Zhang, H.M., and Zhai, Y.Q. " Experimental Study on Seismic Performance of RC Shear Wall with High-Strength Rebars"; American Society of Civil Engineers; 2013; pp. 505-512.
 [14] Altin, S., and Kopraman, Y. "Strengthening of RC walls using externally bonding of steel strips"; Engineering Structures; Vol. 49; 2013; pp. 686-695.
[15] Adebar, P., Ibrahim, A.M.M., and Bryson, M. "Test of High-Rise Core Wall: Effective Stiffness for Seismic Analysis"; ACI STRUCTURAL JOURNAL; Vol. 104; No.5; 2007; pp. 549-559.
[16]  Liao, Fei-Yu, Lin Hai Han, and Zhong Tao. "Performence of reinforced concrete shear walls with steel reinforced concrete boundary columns." Engineering Structures, 2012: 186-209.
 
[17] Hibbitt, Karlson, and Sorensen. "ABAQUS/standard user’s manual, version 6.5"; USA: Hibbitt, Karlson & Sorensen Inc.; Providence; RI; 2005.
 [18] Lubliner, J., Oliver, J., Oller, S., and Oñate, E. "A plastic-damage model for concrete"; Int J Solids Struct; 1989; pp.  299–326.
 [19] Lee, J., and Fenves, G.L. "Plastic-damage model for cyclic loading of concrete structures"; J Eng Mec; ASCE; Vol. 124; No.8; 1998; pp. 892–900.
[20] ACI.318-08; "Building code Requirements for Structural Concrete and Commentary"; American Concrete Institute; 2008.
[21] Attard, M.M., and Setunge, S. "Stress–strain relationship of confined and unconfined concrete"; ACI Mater J; Vol. 93; No.5;  1996; pp. 432–42.
[22] Hillerborg, A., Modeer, M., and Petersson, P.E. "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements"; Cem Concr Res; Vol. 6; No.6; 1976; pp. 773-82.
[23] BHRC – PN S- 253 [2014] "Iranian code of practice for seismic resistant design of building,"Iranian building codes and standards, 4th edition, (in Persian).