مدلسازی عددی اندرکنش شمع و خاک روانگرا با استفاده از روش فنر غیرخطی

نویسندگان
1 دانشیار دانشگاه خوارزمی
2 دانشگاه خوارزمی
چکیده
کاهش مقاومت و سختی خاک در اثر روانگرایی باعث ایجاد لنگرهای خمشی و تغییرشکل‌های جانبی زیادی در شمع‌های واقع در خاک روانگرا می‌شود. در این تحقیق برای بررسی رفتار شمع در محیط روانگرا از آنالیز دینامیکی همبسته اندرکنش خاک-شمع-سازه (SPSI) استفاده شده است. اندرکنش شمع-خاک با استفاده از روش فنر غیرخطی دینامیکی p-y شبیه‌سازی شده است. تاثیرات روانگرایی با استفاده از یک ضریب کاهنده به مقاومت جانبی شمع اعمال می‌گردد. رفتار خاک روانگرا با استفاده از مدل چند تسلیمی وابسته به فشار مدلسازی می‌شود. برای شبیه‌سازی اندرکنش فازهای جامد و سیال خاک اشباع بر مبنای تئوری محیط متخلخل اشباع از فرمولاسیون همبسته u-p استفاده شده است. به‌منظور تایید صحت مدل عددی، نتایج مدل عددی با داده‌های دو آزمایش سانتریفیوژ مقایسه شده است. پس از صحت‌سنجی مدل عددی، برای بررسی تاثیر پارامترهای مختلف بر پاسخ دینامیکی شمع و فشار جانبی وارد بر شمع، آنالیز پارامتریک انجام شده است. پارامترهای مورد بررسی شامل ضخامت لایه روانگرا، فرکانس تحریک ورودی، گیرداری سر شمع، سختی شمع، شتاب ماکزیمم ورودی و دانسیته نسبی خاک روانگرا می‌باشند. نتایج مطالعه پارامتریک نشان داد که فشار جانبی وارد بر شمع تقریباً در عمق لایه روانگرا شده ثایت بوده و حدود 7 الی 10 درصد فشار سربار کل در پایه لایه روانگرا می‌باشد.

کلیدواژه‌ها


عنوان مقاله English

Numerical Modeling of Pile and Liquefied Soil Interaction using Non-Linear Spring Method

نویسنده English

h shahir 1
1 kharazmi univercity
چکیده English

Decrease in the strength and stiffness of soil duo to liquefaction may cause large bending moments and lateral deformations in piles located in this type of soils. To reliable design of pile foundations in the liquefaction susceptible soils, it is necessary to have a accurate evaluation of the lateral pressure which will be exerted on the pile if the subsurface layers undergo liquefaction and lateral spreading in the course of earthquake. In this study, a coupled Soil-Pile-Structure Interaction (SPSI) analysis method has been used to investigate the behavior of piles in liquefiable soils. Interaction of soil-pile was simulated by using nonlinear p-y springs. The liquefaction effects were taken into account by introducing a degradation multiplier to the lateral resistance of soil. The degraded lateral resistance of liquefied soil was considered equal to 5% of its initial value for loose sand and 10% for medium sand. Fully coupled dynamic analysis of a soil column in the free-filed condition was performed in the OpenSEES (Open System for Earthquake Engineering Simulation) software. For simulation of the interaction of solid-fluid phases based on the theory of saturated porous medium, u-p formulation has been used. Liquefied soil behavior was modeled using pressure dependent multi yield material model. From the coupled analysis, the time histories of excess pore pressure ratio at the different levels are obtained. The value of excess pore pressure ratio (0.0 to 1.0) is used to interpolate the transient lateral resistance of soil from its initial value in the static condition (excess pore pressure ratio equal to 0.0) to its final degraded value in the fully liquefied condition (excess pore pressure ratio equal to 1.0). In order to verify the numerical model, results of numerical modeling have been compared with two centrifuge experiments' measurements. Both of experiments include two soil layers and the pile is extended into the lower layer. In the first experiment, the loose sand layer is above the medium dense layer and in the second experiment the medium dense sand layer is above the dense layer. After verification of the numerical model, parametric analysis was performed to study the effect of various parameters on the dynamic response of piles and applied lateral pressure from the spreading liquefied soil to pile. Investigated parameters are liquefaction layer thickness, the input excitation frequency, fixity of the pile cap, pile stiffness, maximum input acceleration and the relative density of liquefiable soil. The results of the parametric analysis show that the maximum bending moment in the case of fixed head occurs at the top of pile and in the case of free head at the depth of 1 to 3 meters. The maximum bending moment of pile is also greater in the case of fixed head pile; however, its lateral deformation is lower. Increasing of frequency of input motion and soil relative density or decreasing of liquefied soil thickness lead to decreasing of maximum bending moment and deformation of pile. Regarding the lateral pressure exerted on the pile, the results of analysis indicate that the lateral pressure is relatively constant at the depth of liquefied layer and is equal to 7 to 10 percent of the total vertical pressure at the base of liquefied layer.

کلیدواژه‌ها English

Liquefied soil
Pile
Interaction
Non-linear spring
coupled analysis
1- He L., Elgamal A., Abdoun T., Abe A., Dobry R. & Hamada M. 2009 Liquefaction-induced lateral load on pile in a medium Dr sand layer. Journal of Earthquake Engineering, 13, 916–938.
2- Elgamal A., He L., Lu J., Abe A., Abdoun T., Dobry R., Sato M., Tokimatsu K. & Shantz T. 2006 Liquefaction-induced lateral load on piles. In: Fourth international conference on earthquake engineering, Taipei, China, Paper no. 42.
3- Abdoun T., Dobry R., O’Rourke T. & Goh S.H. 2003 Single piles in lateral spreads: Field bending moment evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 129(10), 879–89.
4- Haigh S.K. & Madabhushi S.P.G. 2002 Centrifuge modelling of lateral spreading past pile foundations. In: International Conference on Physical Modelling in Geotechnics, St John’s, Newfoundland, Canada.
5- Gonzalez L., Abdoun T. & Dobry R. 2005 Effect of soil permeability on centrifuge modeling of pile response to lateral spreading. In: Workshop on Simulation and Seismic Performance of Pile Foundations in Liquefied and Laterally Spreading Ground, University of California at Davis, Davis, California, USA.
6- Cubrinovski M., Uzuoka R., Sugita H., Tokimatsu M., Sato K. & Kamata T. 2008 Prediction of pile response to lateral spreading by 3-D soil–water coupled dynamic analysis: shaking in the direction of ground flow. Soil Dynamics and Earthquake Engineering, 28(6), 421-435.
7- Cheng Z.H. & Jeremic B. 2009 Numerical modeling and simulation of pile in liquefiable soil. Soil Dynamics and Earthquake Engineering, 29, 1404-1416.
8- Klar A., Frydman S. & Baker R. 2004 Seismic analysis of infinite pile groups in liquefiable soil. Soil Dynamics and Earthquake Engineering, 24, 565-575.
9- Rahmani A. & Pak A. 2012 Dynamic behavior of pile foundations under cyclic loading in liquefiable soils. Computers and Geotechnics, 40, 114-126.
10- Matlock H. 1970 Correlations for design of laterally-loaded piles in soft clay. In: Proc. 2nd Annual Offshore Technology Conference, Paper No. OTC 1204, Vol. 1, 577-594.
11- Reese L.C., Cox W.R. & Koop F.D. 1974 Analysis of laterally loaded piles in sand. In: Proc. 6th Offshore Technology Conf., Vol. 2, Houston, 473–483.
12- Wang S.T. & Reese L.C. 1998 Design of pile foundations in liquefied soils. In: Geotechnical Earthquake Engineering and Soil Dynamics III (GSP 75), Proc., Specialty Conf., P. Dakoulas, M. K. Yegian, and R. D. Holz (eds.), Seattle, WA, 1331–1343.
13- Murchinson J.M. & O’Neill M.W. 1984 Evaluation of p-y relationship in chohesionless soils. In: Analysis and design of pile foundations, J.R. Meyer (ed.), ASCE, 174-191.
14- Wilson D. 1998 Soil-pile-superstructure interaction in liquefying sand and soft clay. PhD thesis, University of California, Davis.
15- Brandenberg S.J. 2005 Behavior of pile foundations in liquefied and laterally spreadinggroun. Ph.D. thesis, Univ. of California at Davis, Davis, Calif.
16- Architectural Institute of Japan (AIJ) 2001 Recommendations for design of building foundations (in Japanese).
17- Liu L. & Dobry R. 1995 Effect of liquefaction on lateral response of piles by centrifuge model tests. National Center for Earthquake Engineering Research (NCEER) Bulletin, 9(1), 7-11.
18- Open System for Earthquake Engineering Simulation, Pacific Earthquake Engineering Research Center, University of California, Berkeley (http://Opensees.berkeley.edu/).
19- Boulanger R.W., Curras C.J., Kutter B.L., Wilson D.W. & Abghari A 1999 Seismic soil-pile-structure interaction experiments and analyses. Journal of Geotechnical and Geoenvironmental Engineering, 125(9), 750-759.
20- API 1993 Recommended Practice for Planning, Design, and Constructing Fixed Offshore Platforms. API RP 2A–WSD. 20th ed. American Petroleum Institute.
21- Elgamal A., Yang Z. & Parra E. 2002 Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22, 259-271.
22- Mroz Z. 1967 On the description of anisotropic work hardening. Journal  of  Mech. Phys. Solids, 15, 163–175.
23- Prevost J.H. 1985 A simple plasticity theory for frictional cohesionless soils. Soil Dynamics and Earthquake Engineering, 4(1), 9–17.
24- Mazzoni S., McKenna F., Scott M.H. & Fenves G.L. 2006 OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center.
25- Mori S., Numata A. & Guan B. 1999 Damage to a pile foundation due to liquefied ground motion. In: 12th WCEE, No. 0811.
26- Japan Road Association (JRA) 2002 Seismic design specifications for highway bridges. Public Works Research Institute (PWRI) and Ministry of Land, Infrastructure and Transport, Tokyo, Japan.