تحلیل اجزاء محدود لوله‌های مدفون در برابر جابه‌جایی ناشی از حرکت گسل معکوس

نویسندگان
1 Civil Eng. Department, University of Kashan
2 کارشناس ارشد سازه، دانشگاه کاشان
چکیده
خطوط لوله موسوم به شریان‌های حیاتی در مقایسه با سایر ابنیه متعارف از اهمیت ویژه‌ای در خدمت‌رسانی به طیف وسیعی از جامعه برخوردار هستند. با مروری بر خرابی‌های ایجاد شده در زلزله‌های گذشته، جابه‌جایی ناشی از حرکت گسل یکی از مخاطرات اصلی برای لوله‌های مدفون قلمداد می‌شود. با توجه به محدودیت‌ روش‌های تحلیلی، انجام مطالعات شبیه‌سازی عددی و ارزیابی دقیق‌تر بازتاب لوله‌های مدفون ضروری به نظر می‌رسد. در این تحقیق، اثر جابه‌جایی قابل انتظار گسل‌های معکوس بر روی پاسخ خطوط لوله فولادی پیوسته مدفون با استفاده از روش اجزاء محدود سه‌بعدی تحلیل می‌شود. در این بررسی، تأثیر عوامل مختلف از جمله زاویه تقاطع لوله با گسل، زاویه شیب گسل، مشخصات خاک پیرامون لوله، عمق دفن و خصوصیات سطح خارجی لوله مطالعه شده است. تحلیل رفتار لوله به روش استاتیکی غیرخطی و با لحاظ نمودن اثر اندرکنش لوله و خاک صورت می‌گیرد. در ادامه، راهکارهای متعددی برای کنترل و یا کاهش میزان خرابی در خط لوله ناشی از اثر گسلش ارائه می‌گردد.

کلیدواژه‌ها


عنوان مقاله English

FINITE ELEMENT ANALYSIS OF BURIED PIPELINES CROSSING REVERSE FAULT

نویسنده English

Mohamad Mehdi Hajnorouzi 2
1 Civil Eng. Department, University of Kashan
2 MSc in Structural Engineering, University of Kashan
چکیده English

Response evaluation of buried steel pipelines at active fault crossings is among the top seismic design priorities. This is because the axial and bending strains induced to the pipeline by step-like permanent ground deformation may become fairly large and lead to rupture, either due to tension or due to buckling. Surface faulting has accounted for many pipe breaks during past earthquakes, such as the 1971 San Fernando (USA), the 1995 Kobe (Japan), the 1999 Izmit (Turkey), the 1999 Chi-Chi (Taiwan) events and more recently, the 2004 Mid Niigata earthquake in Japan. Literature review suggests that previous researches in the analysis of pipeline subjected to fault motion have been mainly focused on the case of strike-slip fault. Certainly, a 3D large scale finite element analysis is a powerful method and allows a rigorous solution of the problem with minimizing the number of necessary approximations. The aim of present work is to examine and compare the mechanical response of continuous (welded) buried steel pipelines crossing active reverse faults by three dimensional FEM. General-purpose finite element program ABAQUS is employed to simulate accurately the mechanical behaviour of the steel pipe, the surrounding soil medium and their interaction, considering the non-linear geometry of the soil and the pipe through a large-strain description of the pipeline-soil system and the inelastic material behaviour for both the pipe and the soil. For 3D FEM continuum model, an elongated prismatic model is considered, where the pipeline is embedded in the soil. Four-node reduced-integration shell elements (type S4R) are employed for modeling the pipeline cylinder, whereas eight-node reduced-integration brick elements (C3D8R) are used to simulate the surrounding soil. The analysis is conducted in two steps; gravity loading is applied first and subsequently fault movement is imposed. Seismic fault plane is assumed to be located at the middle cross-section of the pipeline. The steel pipeline was of the API5L-X65 type, with a bi-linear elasto-plastic stress–strain curve given by Ramberg-Osgood model. The mechanical behavior of soil material is described through an elastic–perfectly plastic Drucker-Prager constitutive model. A contact algorithm is considered to simulate rigorously soil–pipeline interaction which accounts for large strains and displacements. The analysis proceeds using a displacement-controlled scheme, which increases gradually the fault displacement. Quasi-static analyses were carried out by applying fault offset components to soil block in the continuum FE models through a smooth loading function of time. Buried steel pipelines have been analyzed for reverse fault motion to study the influence of design parameters viz. crossing angle, backfill properties, burial depth, pipe surface property, pipe material and cross-section properties on maximum compressive strain, and buckling of the pipeline. The following main conclusions were obtained based on the studied response of pipeline subjected to reverse fault motion using the FEM model.
- For the steel pipeline subjected to reverse fault motion, compressive strain was always found to be more critical than the tensile strain.
- The capacity of the buried pipeline to accommodate the reverse fault offset could be increased by adopting: a loose granular backfill, a shallower burial depth, near-parallel orientation with respect to the fault line, a smooth and hard surface coating, and increasing pipe-wall thickness.
- Finally, the obtained information can provide either guidance for developing improved earthquake-resistant design or countermeasures to mitigate damage to pipelines crossing active reverse faults.

کلیدواژه‌ها English

Soil-pipe interaction
FEM
Reverse fault
performance
Non-Linear Analysis
  1. - مراجع



    1. EERI, “The Izmit (Kocaeli) Turkey earthquake of August 17, 1999”, EERI special earthquake report, 1999.

    2. Uzarski, J., Arnold, C., “Chi-Chi, Taiwan, Earthquake of September 21, 1999, Reconnaissance Report”, Earthquake Spectra, Professional J EERI, 2001, 17 (Suppl. A).

    3. Davoodi Moghaddam, M., "Seismic behavior of buried pipelines due to surface faulting", MSc Thesis, University of Kashan, Iran, 2014, (In Persian).

    4. Newmark, N.M., Hall, W.J., “Pipeline design to resist large fault displacement”, In Proceedings of the U.S. National Conference on Earthquake Engineering, 1975, pp. 416–25.

    5. Kennedy, R.P., Chow, A.W., Williamson, R.A., “Fault movement effects on buried oil pipeline”, ASCE Journal of Transportation Engineering, 1977, 103, pp. 617–33.

    6. Wang, L.R.L., Yeh, Y., “A refined seismic analysis and design of buried pipeline for fault movement”, Journal of Earthquake Engineering and Structural Dynamics, 1985, 13, pp. 75-96.

    7. Bargi, Kh., Heravi, GhR., "Earthquake effect on the burried gas pipeline", J. of Faculty of Eng., University of Tehran, 1995, pp. 22-38 (In Persian).

    8. Vougioukas, E.A., Theodossis, C., Carydis, P.G., “Seismic analysis of buried pipelines subjected to vertical fault movement”, ASCE, 1979, 105, pp. 432–41.

    9. Desmond, T.P., Power, M.S., Taylor, C.L., Lau, R.W., “Behavior of large-diameter pipeline at fault crossings”, ASCE, TCLEE, 1995, 6, pp. 296–303.


    10. Karamitros, D.K., Bouckovalas, G.D., Kouretzis, G.P., “Stress analysis of buried steel pipelines at strike-slip fault crossings”, Soil Dynamics and Earthquake Engineering, 2007, 27, pp. 200–11.


    11. Karamitros, D.K., Bouckovalas, G.D., Kouretzis, G.P., Gkesouli, V. “An analytical method for strength verification of buried steel pipelines at normal fault crossings”, Soil Dynamics and Earthquake Engineering, 2011, 31, pp. 1452-1464.


    12. Ha, D., Abdoun, T.H., O’Rourke, M.J., Symans, M.D., O’Rourke, T.D, Palmer, M.C., “Buried high-density polyethylene pipelines subjected to normal and strikeslip faulting-a centrifuge investigation”, Canadian Geotechnical Journal, 2008, 45, pp.1733-42.


    13. Abdoun, T.H., Ha, D., O’Rourke, M.J., Symans, M.D., O’Rourke, T.D., Palmer, M.C., Stewart, H., “Factors influencing the behavior of buried pipelines subject to earthquake faulting”, Soil Dynamics and Earthquake Engineering, 2009, 29, pp. 415-427.


    14. Rahimzadeh Rofooei, F., Hojat Jalali, H., Attari, N.K.A., Kenarangi, H., Samadian, M., “Parametric study of buried steel and high density polyethylene gas pipelines due to oblique-reverse faulting”, Canadian Journal of Civil Engineering, 2015, 42(3), pp. 178-189.


    15. Vazouras, P., Karamanson, S., Dakoulas, P., “Mechanical behavior of buried steel pipes crossing active strike-slip faults”, Soil Dynamics and earthquake Engineering, 2012 ,41, pp. 164 –180.


    16. Vazouras, P., Dakoulas, P., Karamanos, S.A., “Pipe-soil interaction and pipeline performance under strike-slip fault movements”, Soil Dynamics and Earthquake Engineering, 2015,72, pp. 48 –65.


    17. Tahghighi, H., Hajnorouzi, M.M., “Numerical evaluation of the strike-slip fault effects on the steel buried pipelines”, Journal of Seismology and Earthquake Engineering (under publication).


    18. Youngs, R.R., Arabasz, W.J., Anderson, R.E., Ramelli, A.R., Ake, J.P., Slemmons, D.B., McCalpin, J.P., Dorser, D.I., Fridrich, C.J., Swan, F.H., Rogers, A.M.,  Yount, J.C., Anderson, L.W., Smith, K.D., Bruhr, R.L., Knuepfer, P.L.K., Smith, R.B., dePolo, C.M., O’Leary, D.W., Coppersmith, K.J., Pezzopane, S.K., Schwartz, D.P., Whitney, J.W., Olig, S.S., Toro, G.R., “A  methodology for probabilistic fault displacement hazard analysis (PFDHA)”, Earthquake Spectra, 2003, 19(1), pp. 191-219.


    19. Wells, D.L., Coppersmith, K.J., “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement”, Bulletin of the Seismological Society of America, 1994, 84 (4), pp. 974–1002.


    20. IITK-GSDMA, “Guidelines for seismic design of buried pipelines”, National Information Center of Earthquake Engineering, Indian Institute of Technology, Kanpur, India, 2008.


    21. The oil ministry of Iran, "Iranian seismic design code for oil industries", (2nd Edition), Pub. No. 038-10, 2010 (In Persian).


    22. American Lifelines Alliance, (ALA)-ASCE, “Guidelines for the design of buried steel pipe”, 2001, (with addenda through February 2005).


    23. Tahghighi, H., “On the structural seismic  evaluation of pipelines against earthquake hazards”, Report on research project, grant-in-aid for scientific research, University of Kashan, 2014.


    24. ABAQUS, “General finite element analysis program”, Abaqus manual, Version 6.11, HKS, Inc., 2012.


    25. American Petroleum Institute, API, “Specification for pipeline”, 1990.


    26. Shadab Far, M., Hassani, N., Rasti, R., Faraji., J., “A study on the nonlinear behavior of crossing-fault buried pipelines using pushover analysis”, American Journal of Civil Engineering, 2014, 2(6), pp. 152-157.


    27. Joshi, S., Prashant, A., Deb, A., Jain, S.K.,“Analysis of buried pipelines subjected to reverse fault motion”, Soil Dynamics and Earthquake Engineering, 2011, 31, pp. 930–940.


    28. Moser A.P., “Buried pipe design”, 2nd ed. New York, McGraw-Hill, 2001.


    29. Kyriakides, S., Ju, G.T., “Bifurcation and localization instabilities in cylindrical shells under bending I: experiments”, International Journal of Solids and Structures, 1992, 29, pp. 1117-42.


    30. Das, S., Cheng, J., Murray, D., and Nazemi, N., “Effects of monotonic and cyclic bending deformations on NPS12 wrinkled steel pipe”, Journal of Structural Engineering, ASCE, 2008, 134 (12), pp. 1810-1817.


    31. American Scoiety of Civil Engineers (ASCE), “Differential ground movement effects on buried pipelines”, Guidelines for the seismic design of oil and gas pipeline systems, 1984, pp. 150–228.


    32. O'Rourke, M.J., Liu, X., “Seismic design of buried and offshore pipelines”, MCEER, University at Buffalo, State University of New York, 2012.