بهبود کنترل لرزه ای سازه های قابی در برابر زلزله های دور و نزدیک گسل با استراتژی جدید کنترل گر بهینه خطی گوسی

نویسنده
استادیار، عضو هیئت علمی گروه عمران دانشکده فنی و مهندسی دانشگاه بین المللی امام خمینی (ره)- قزوین
چکیده
در این مقاله الگوریتم اصلاح شده کنترل‌گر بهینه خطی گوسی برای کنترل مؤثرتر پاسخ لرزه‌ای سازه‌های قابی پیشنهاد می‌گردد. بارهای محیطی (نظیر زمین لرزه) در همان لحظۀ محاسبه و اعمال نیروی کنترل بر سازه، قابل اندازه گیری نیستند. از اینرو، این بارها در الگوریتم-های کنترل متداول از جمله تنظیم‌گر درجه دوم خطی و کنترل‌گر بهینه خطی گوسی، لحاظ نمی‌شوند. بنابراین فرمان کنترل‌گر بهینه LQG، صرفاً متناسب با حالت تقریبی سازه در لحظۀ اعمال نیروی کنترل است. در الگوریتم کنترل پیشنهادی، با بهره‌مندی از یک متغیر جدید، شتاب زلزله، در معادلۀ تخمین‌گر فیلتر کالمن و تنظیم‌گر بهینه درنظر گرفته می‌شود. بر اساس روش پیشنهادی، دو نوع استراتژی کنترل ارائه می‌گردد. فرمان کنترلی اول شامل نیروی کنترل، ضریبی از حالت تقریبی سیستم و خروجی سنجش حسگرها، در گام زمانی پیشین، است. این حالت تقریبی سیستم در فرمان کنترل اول توسط الگوریتم فیلتر کالمن متداول و شناخته شده محاسبه می‌گردد. در حالی‌که در استراتژی کنترلی دوم، نخست تخمین‌گر فیلتر کالمن بر اساس معادلات فضای حالت جدید اصلاح شده، و سپس از مقادیر حالت تقریبی سازه بدست آمده از آن، در محاسبۀ فرمان کنترل بهره گرفته‌ می‌شود. تحلیل عددی کنترل فعال سازه هفت طبقه، جهت ارزیابی تأثیر دو کنترل‌گر پیشنهادی در کاهش پاسخ لرزه‌ای سازه تحت زلزله‌های نزدیک و دور از گسل و مقایسه آنها با پاسخ سازه بدون کنترل و با کنترل‌گر متداول LQG، انجام گرفته است.

کلیدواژه‌ها


عنوان مقاله English

Improvement in seismic control of frame structures against far-fault and near-fault earthquakes with new strategy of Gaussian linear optimal control

نویسنده English

Maijd Amin Afshar
چکیده English

In this paper, a modified linear-quadratic-Gaussian (MLQG) optimal control algorithm is proposed for controlling the seismic response of frame structures. Environmental loads (e.g., earthquakes) at the moment of calculation and exertion of control forces to structures, can not be measured. So these loads are not included in the conventional control algorithms, such as linear quadratic regulator and linear-quadratic-Gaussian control. Therefore the command of LQG optimal controller is merely a proportional feedback of estimated state of structure at the moment of exertion. This state approximation is performed by optimal state stimator or Kalman filter. In the proposed control algorithm, using a new variable, including control force andearthquake force, acceleration of gound motion, which is non-measurable duting exertion of control force, is considered in the state space equation of motion and also in both of Kalman Filter estimator and the optimal regulator. According to the proposed control algorithm, two ways are selected. So first command control are sum of the control force and ratios of the estimated state and measurement output of sensors, which are obtained and used in previous time step. The estimated state of system, used in the first command control, is calculated by the conventional and knownKalman Filter. but in second strategy of control, First, the Kalman Filter estimator is modified based on new state space equations, and then the estimated state of structure obtained from it, is used for calculation of command control. Numerical simulation of a seven-storey structure with active control system under several far-fault and near-fault earthquakes are performed to show effectiveness of two proposed controls on mitigation of structural responses and compare to those of a uncontrolled structure and a structure controlled with conventional control. Also sensitivity of some perforemance measures for controllers are investigated against changes of some controlling and perturbation parameters of systems or uncertainties. The alalysis results demonstrate that control performance of the proposed controllers, specially the second one, are better and also stable and robust under variations of uncertainties. So that the greatest reduction in maximum displacement (even up to 80 percent) compared to uncontrolled displacement of structure and meanwhile, very low energy consumption are attained by the second proposed control strategy.but in second strategy of control, First, the Kalman Filter estimator is modified based on new state space equations, and then the estimated state of structure obtained from it, is used for calculation of command control. Numerical simulation of a seven-storey structure with active control system under several far-fault and near-fault earthquakes are performed to show effectiveness of two proposed controls on mitigation of structural responses and compare to those of a uncontrolled structure and a structure controlled with conventional control. Also sensitivity of some perforemance measures for controllers are investigated against changes of some controlling and perturbation parameters of systems or uncertainties. The alalysis results demonstrate that control performance of the proposed controllers, specially the second one, are better and also stable and robust under variations of uncertainties. So that the greatest reduction in maximum displacement (even up to 80 percent) compared to uncontrolled displacement of structure and meanwhile, very low energy consumption are attained by the second proposed control strategy.

کلیدواژه‌ها English

LQG optimal control
Kalman filter
Active structural control
Structural dynamics
Earthquake
[1] Soong T.T. 1990 Active Structure Control: Theory and Practice. England, Longman Scientific and Technical.
[2] Gawronski W.K. 1998 Dynamics and Control of Structures: A Modal Approach, Springer-Verlag, New York.
[3] Gawronski, W.K. 1994 A Balanced LQG Compensator for Flexible Structures. Automatica, 30(10), 1555-1564.
[4] Wu J.C., Yang J.N. 2000 LQG control of lateral torsional motion of Nanjing TV transmission tower. Earthquake Engineering and Structural Dynamics, 29, 1111–1130
[5] Shafieezadeh A., Ryan K.L., 2011 Demonstration of robust stability and performance of filter-enhanced H2/LQG controllers for a nonlinear structure. Structural Control and Health Monitoring, 18, 710–720
[6] Askari M., Li J., Samali B. 2011 Semi-Active LQG Control of Seismically Excited Nonlinear Buildings using Optimal Takagi-Sugeno Inverse Model of MR Dampers. Procedia Engineering,14, 2765–2772
[7] Wang Y., Dyke S. 2013 Modal-based LQG for Smart Base Isolation System Design in Seismic Response Control. Structural Control and Health Monitoring, 20(5), 753–768
[8] Jin Q., Liu L., 2014 Design of a Robust Internal Model Control PID Controller Based on Linear Quadratic Gaussian Tuning Strategy. The Canadian Journal of Chemical Engineering, 92(7), 1260-1270.
[9] Qian F., Huang J., Liu D., Hu S. 2015 Adaptive Dual Control of Discrete-Time LQG Problems with Unknown-But-Bounded Parameter. Asian Journal of Control, 17(3),  942-951.
[10] Hur S., Leithead W.E. 2016 Model predictive and linear quadratic Gaussian control of a wind turbine. Optimal Control Applications and Methods,  DOI: 10.1002/oca.2244
[11] Tabatabaiefar H.R., Fatahi B., Samali B. 2014 An empirical relationship to determine lateral seismic response
of mid-rise building frames under influence of
soil–structure interaction. The Structural Design of Tall and Special Buildings, 23, 526-548.
[12] Yanik A., Aldemir U., Bakioglu M. 2014 A new active control performance index for vibration control of three-dimentional structures. Engineering Structures, 62, 53-64.