ارزیابی پارامترهای مؤثر بر ظرفیت باربری ستون‌های فولادی جعبه‌ای مقاوم‌سازی شده تحت بار

نویسندگان
دانشگاه صنعتی امیرکبیر
چکیده
مقاوم‌سازی سازه‌های موجود یکی از مسائل مهم در حوزه مهندسی عمران به شمار می‌آید. در بیشتر موارد مقاوم‌سازی زمانی صورت می‌گیرد که سازه در حال بهره‌برداری بوده و عضو تحت بارهای سرویس قرار دارد؛ بنابراین یکی از نکات مهم در بحث مقاوم‌سازی که غالباً از آن چشم‌پوشی می‌شود، نیروی محوری قابل‌توجه موجود در ستون، قبل از مقاوم‌سازی آن می‌باشد. در این مقاله با در نظر گرفتن نیروی محوری در ستون با مقطع مربعی و مقاوم‌سازی آن با ورق‌های تقویتی فولادی، میزان تأثیر پارامترهایی نظیر انحنای ستون در زمان مقاوم‌سازی، مقدار پیش‌بار، نسبت لاغری و نسبت سطح مقطع ورق‌های تقویتی به ستون پایه بر حداکثر ظرفیت باربری این نوع ستون‌ها مورد بررسی قرارگرفته است. از آنچا که هدف اصلی در این پژوهش تعیین میزان تغییرات ظرفیت باربری نسبت به مقادیر آیین‌نامه می-باشد، حداکثر ظرفیت باربری مدل‌های بدون پیش بار منطبق بر نتایج حاصل از آیین‌نامه در نظر گرفته شده و انحنای اولیه مناسب برای هر نمونه محاسبه شده است. بر اساس نتایج بدست آمده اعمال پیش بار به ستون تقویت نشده سبب افزایش انحنای موجود و به تبع آن کاهش حداکثر ظرفیت ستون تقویت شده می‌شود. همچنین در یک پیش بار ثابت حداکثر میزان کاهش در ظرفیت باربری نمونه‌ها در لاغری‌های میانه اتفاق افتاده و با افزایش مقدار پیش‌بار، تأثیر میزان تغییرات در نسبت لاغری بر کاهش ظرفیت باربری نمونه‌ها افزایش می‌یابد. در انتها نیز یک رابطه کاربردی جهت محاسبه میزان کاهش در ظرفیت باربری این نوع ستون‌ها بر اساس نسبت لاغری و میزان پیش بار، پیشنهاد شده است.

کلیدواژه‌ها


عنوان مقاله English

Evaluation of Effective Parameters on the Axial Load Carrying Capacity of Preloaded Strengthened Steel Box Columns

نویسندگان English

Mohsen Naseri
Saeed Erfani
Amirkabir university of technology
چکیده English

Strengthening of existing structures is one of the most important issues in the field of structural engineering. Due to avoiding any interruption of service on a structure and economic issues, strengthening process usually occurs when a member is under service loads. On the other hand in the loaded steel columns, it is really difficult to weld plates after unloading the column from existing loads, Therefore one of the important issues being neglected in the redesign process of strengthened columns is the significant axial load existing in the column, caused by service loads before strengthening them. This paper aims at numerically investigating the behavior and ultimate load bearing capacity of in-service strengthened steel box columns with continuous welded plates. Effects of different parameters on the capacity of preloaded strengthened columns are presented and discussed. Included in the result are the effects of initial imperfection; magnitude of preload before strengthening; slenderness ratio of the strengthened column and ratio between cross sectional area of reinforcing plate and unstrengthened column. To investigate the effect of these parameters, each un-retrofitted specimen is exposed to the preloading levels of 0.0, 0.2, 0.4 and 0.6 of the load carrying capacity of unstrengthened column. Then results of this preliminary analysis are defined as a predefined field for the column of same retrofitted model and ultimate bearing capacity of the strengthened model is calculated using a modified Riks analysis method. The critical load carrying capacity of models without pre-existing axial load was set to the theoretical value presented in ANSI/AISC 360-10 and suitable imperfection for each model was calculated. This is because the main objective of this study is the variation of results with respect to the existing design curves. Based on the results of numerical analysis, application of preload to unstrengthened column magnifies the initial geometric imperfection of the column and consequently decreases the ultimate bearing capacity of strengthened column. Also as the magnitude of axial load existing prior to addition of reinforcing plates increases, the ultimate bearing capacity of the strengthened column decreases with respect to the calculated theoretical value. The maximum amount of this reduction for the preload ratios of 0.2, 0.4 and 0.6, is respectively up to 2%, 5% and 9.5% of the load-bearing capacity of strengthened column. As another result, slenderness ratio is one of the main parameters that affect the bearing capacity of specimens with a specified preload level. This means that at a constant preload level the maximum reduction in bearing capacity occurs for models with median slenderness ratio. Also models with cross sectional ratio of reinforcing plates ranging from 0.4 to 1.0 were studied and it was shown that inside this range the cross sectional ratio of reinforcing plates parameter does not have remarkable effect on the ultimate bearing capacity of column. At the end, an empirical relation is proposed to calculate reduction of ultimate bearing capacity for columns with different slenderness ratios and preload level. Results of this study may be utilized to increase the accuracy of redesigning process during in-service strengthening of steel box columns.

کلیدواژه‌ها English

Strengthening
Load Carrying Capacity
preload
Steel box column
[1]           Ong K. C. & Kang J. 2004 Jacketing of preloaded steel columns. Journal of Constructional Steel Research, 60 (1), 109–124.
[2]           Liu Y. & Gannon L. 2009 Finite element study of steel beams reinforced while under load. Engineering Structures, 31(11), 2630–2642.
[3]           Wang Y., Zong L., Zhu R., Liu X. & Shi Y. 2015 Behavior of I-section steel beam welding reinforced while under load. Journal of Constructional Steel Research, 106, 278–288.
[4]           Rao N. R. N. & Tall L. 1962 Columns reinforced under load. Welding journal, 42, 2-63.
[5]           Tall L. 1989 The reinforcement of steel columns. Engineering Structures, 26(1), 33.
[6]           Brown J. H. 1988 Reinforcing loaded steel compression members. Engineering Structures, 25(4).
[7]           Marzouk H. & Mohan S. 1990 Strengthening of wide-flange columns under load. Canadian Journal of Civil Engineering, 17(5), 835–843.
[8]           Wu Z. & Grondin G. Y. 2003 Behaviour of Steel Columns Reinforced with Welded Steel Plates. Structural Engineering Report Number 250, National Library of Canada.
[9]           Longshithung Patton M. & Darunkumar Singh K. 2013 Buckling of fixed-ended lean duplex stainless steel hollow columns of square, L-, T-, and +-shaped sections under pure axial compression - A finite element study. Thin-Walled Structures, 63, 106–116.
[10] Pavlovčič L., Froschmeier B., Kuhlmann U. & Beg D. 2012 Finite element simulation of slender thin-walled box columns by implementing real initial conditions. Advances in Engineering Software, 44(1), 63–74.
[11]         Ban H., Shi G., Shi Y. & Wang Y. 2012 Overall buckling behavior of 460MPa high strength steel columns: Experimental investigation and design method. Journal of Constructional Steel Research, 74, 140–150.
[12]         Shi G., Zhou W., Bai Y. & Lin C. 2014 Local buckling of 460MPa high strength steel welded section stub columns under axial compression. Journal of Constructional Steel Research, 100, 60–70.
[13]         Kim S. E. & Lee D. H. 2002 Second-order distributed plasticity analysis of space steel frames. Engineering Structures, 24(6), 735–744.
 
[14]         Salmon C. G., Johnson J. E. & Malhas F. A. 1980 Steel structures: design and behavior. Harper & row New York.
[15]         Yang D. & Hancock G. J. 2006 Numerical Simulation of High-Strength Steel Box-Shaped Columns Failing in Local and Overall Buckling Modes. Journal of Constructional Steel Research, 132(4), 541–549.
[16] Saliba            N. & Gardner L. 2013 Experimental study of the shear response of lean duplex stainless steel plate girders. Engineering Structures, 46, 375–391.
[17]         Zhou F. & Young B. 2013 Web crippling behaviour of cold-formed duplex stainless steel tubular sections at elevated temperatures. Engineering Structures, 57, 51–62.
[18]         Yuan H. X. X., Wang Y. Q. Q., Gardner L. & Shi Y. J. J. 2014 Local–overall interactive buckling of welded stainless steel box section compression members. Engineering Structures, 67, 62–76.
[19]         Ziemian R. D. 2010 Guide to stability design criteria for metal structures. John Wiley & Sons.
[20]         Seif M. & McAllister T. 2013 Stability of wide flange structural steel columns at elevated temperatures. Journal of Constructional Steel Research, 84, 17–26.
[21]         Yuan H. X., Wang Y. Q., Shi Y. J. & Gardner L. 2014 Residual stress distributions in welded stainless steel sections. Thin-Walled Structure, 79, 38–51.
[22]         Wang Y.-B., Li G.-Q., Chen S.-W. & Sun F.-F. 2012 Experimental and numerical study on the behavior of axially compressed high strength steel columns with H-section. Engineering Structures, 43, 149–159.
[23]         Lui E. M. and Chen W. F. 1987 Structural stability: theory and implementation. Elsevier, New York.