تاثیر دمای عمل آوری و نانوذرات سیلیکا بر خصوصیات مهندسی خاک تورمی اصلاح شده با آهک

نویسندگان
1 عضو هیات علمی گروه عمران
2 کارشناسی ارشد عمران
چکیده
در پژوهش حاضر بطور همزمان تاثیر دمای عمل آوری و افزودن نانوذرات سیلیکا (NS) بر عملکرد آهک در اصلاح خصوصیات مهندسی خاک تورمی از طریق انجام آزمایشهای مختلف بزرگ ساختاری و ریزساختاری تجزیه و تحلیل شد. نتایج بدست آمده نشان میدهد با کاهش دما (به ویژه دمای زیر C° 20 و در زمانهای نگهداری کمتر از 28 روز)، فعالیت پوزولانی و رشد ترکیبات سیمانی (مانند نانوساختارهای CSH و CAH) دچار اختلال شده و فرآیند اصلاح خاک بعد از افزودن آهک عمدتاً ناشی از واکنشهای کوتاه مدت (تبادل کاتیونی و افزایش فشار اسمز) رخ میدهد. در این شرایط علاوه بر افزایش مقدار افزودنی لازم برای کنترل تورم، مشخص شد بهبود سایر پارامترهای ژئومکانیکی خاک (ازجمله ظرفیت باربری و پتانسیل نشست پذیری) بسیار اندک میباشد. از طرفی، نتایج بیانگر آنست که در حضور ترکیب آهک-نانوذرات سیلیکا (LNS) اثر نامطلوب افت دما بر مشخصات مهندسی نمونه ها کاهش یافته و بر خلاف محدودیت عملکرد آهک، مقاومت فشاری نمونه های اصلاح شده با LNS متناسب با افزایش ماده افزودنی روند کاملاً صعودی دارد. بر اساس طیفهای پراش اشعه ایکس و تصاویر SEM، علت حساسیت کمتر نمونه های حاوی LNS به دما و زمان نگهداری و رفتار بهتر در مقایسه با آهک تنها، به دلیل انجام سریعتر و بیشتر واکنشهای پوزولانی و افزایش تراکم ساختار ارزیابی شد. بر پایه نتایج این مطالعه، استفاده از LNS (به خصوص در هوای سرد و زمانهای محدود عمل آوری) ضمن شدت بخشی تاثیر آهک، مصرف افزودنی را تا 50 درصد کاهش خواهد داد.

کلیدواژه‌ها


عنوان مقاله English

Effect of curing temperature and SiO2-nanoparticles on the engineering properties of lime treated expansive soil

نویسنده English

Amir reza Goodarzi 1
چکیده English

Expansive clayey soils can undergo periodic volumetric changes in the form of ground heave and settlement when subjected to moisture fluctuations. Such changes may lead to exert stress and serious problems to geotechnical structures if not adequately taken care of. Lime continues to be commonly used for treatment of these type soils; however, some restrictions are associated with its application. Therefore, in the present study a series of macro and micro level tests including swelling potential, unconfined compression strength (UCS), consolidation, pH and electrical conductivity (EC), adsorption, X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses were carried out at various curing periods (1, 7, 28 and 90 days) and different temperatures (10, 20, and 40 °C) to assess the effects of environmental condition and SiO2-nanoparticles (NS) on the performance of lime treatment. To achieve the stated objective, lime and lime/NS (LNS) mixture were separately added to highly expandable clay at wide ranges from 0% to 30% by mass, respectively. The results obtained show that the environmental temperature, especially in the initial time of curing, has a prominent role on the geo-mechanical properties of lime treated soil samples. It was also found that the reduction in the temperature particularly at inadequate curing (lower than 28 days) provides a deleterious impact on the pozzolanic activity and decrease the formation of cementing compounds such as Calcium-Silicate-Hydrate (CSH) and Calcium-Aluminate-Hydrate (CAH) gels. In this case, the process of soil modification is mainly due to the short-term reactions (i.e. cation exchange and increase in osmotic pressure), increasing the amount of additives (up to two times) to control the swelling power. On the other hand, the incorporation of SiO2-nanoparticles into the binder system causes a reduction in the detrimental effects of low temperature on the engineering parameters of lime-treated products and decreases their sensitivity to the time of curing. The samples amended with the LNS blend exhibit a continuous development of soil mechanical capacity as the additive content increased. They are less deformable and show a decrease in their compression index by nearly 40% as compared with sole lime. Based on the XRD and SEM experiments, the superior influences of LNS are mainly ascribed to the higher and faster formation of cementitious compounds. In fact, at the presence of LNS, due to direct interaction of lime and silica from NS, the silicate gel can be immediately formed to coat and bind the clay particles together; whereas, with the addition of lime alone, the gel produces only by the removal of silica from the clay minerals that needs further time to complete its formation and hence the lower modification was occurred, especially at curing time shorter than 28 days. Moreover, NS reduces the pores sizes and serves to distribute the new crystalline phase (e.g. CSH gel) in a more homogenous fashion in the available space. This micro-structural reorganization upon the LNS treatment could rapidly block off the soil voids and greatly interlock the clay particles together that provide higher environmentally-stable materials with lower cost and energy as compared to standalone lime. It is finally concluded that the utilization of LNS mixture gives a promising way for increasing the efficiency of lime stabilization and decreasing the additive consumption.

کلیدواژه‌ها English

Expansive clays
Lime-SiO2-nanoparticles
Temperature
Pozzolanic activity
Engineering properties
1. Hotineanu A., Bouasker M., Aldaood A. & Al-Mukhtar M. 2015 Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays. Cold Regions Science and Technology, 119, 151-157.
2. Seco A., Ramírez F., Miqueleiz L. & García B. 2011 Stabilization of expansive soils for use in construction. Appl. Clay Sci., 51, 348-352.
3. Goodarzi A.R. & Akbari H.R. 2014 Assessing the anion type effect on the hydro-mechanical properties of smectite. Geomechanics and Engineering, 7, 183-200.
4. Khemissa M. & Mahamedi A. 2014 Cement and lime mixture stabilization of an expansive overconsolidated clay. Appl. Clay Sci., 95, 104-110.
5. Al-Mukhtar M., Lasledj A. & Alcover J.F. 2010 Behaviour and mineralogy changes in lime-treated expansive soil at 50 °C. Appl. Clay Sci., 50, 199-203.
6. Rao M.R., Rao, A.S. & Babu R.D. 2008 Efficacy of cement-stabilized fly Ash cushion in arresting heave of expansive soils. Geotech Geol Eng., 26, 189-197.
7. Jha A.K., & Sivapullaiah P.V. 2015 Mechanism of improvement in the strength and volume change behavior of lime stabilized soil. Eng. Geology, 198, 2015, 53-64.
8. Di Sante M., Fratalocchi E., Mazzieri F. & Brianzoni V. 2015 Influence of delayed compaction on the compressibility and hydraulic conductivity of soil-lime mixtures. Eng. Geology, 185, 131-138.
9. Saeed K.H., Kassim K. & Nur H. 2014 Physicochemical characterization of cement treated kaolin clay. Gradevinar; 6, 513-521.
10. Hashemi M.A., Massart T.J., Salager S., Herrier G. & François B. 2015 Pore scale characterization of lime-treated sand-bentonite mixtures. Appl. Clay Sci., 111, 50-60.
11. Ouhadi V.R., Yong R.N., Amiri M. & Ouhadi M.H. 2014 Pozzolanic consolidation of stabilized soft clays. Appl. Clay Sci., 95, 111-118.
12. Aldaood A., Bouasker M. & Al-Mukhtar M. 2014 geotechnical properties of lime-treated gypseous soils. Appl. Clay Sci., 88, 39-48.
13. Obuzor G.N., Kinuthia J. M. & Robinson R.B. 2011 Enhancing the durability of flooded low-capacity soils by utilizing lime-activated ground granulated blastfurnace slag (GGBS). Eng. Geology, 123, 179-186.
14. Zhang X., Mavroulidou M. & Gunn M.J. 2015 Mechanical properties and behaviour of a partially saturated lime-treated, high plasticity clay. Eng. Geology, 193, 320-336.
15. Gu K., Jin F., Al-Tabbaa A., Shi B., Liu C. & Gao L. 2015 Incorporation of reactive magnesia and quicklime in sustainable binders for soil stabilization. Eng. Geology, 195, 53-62.
16. Li X., Chen Q., Zhou Y., Tyrer M. & Yu Y. 2014 Stabilization of heavy metals in MSWI fly ash using silica fume. Waste Management, 34, 2494-2504.
17. Nazari A. & Riahi S. 2011 The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete. Composites, 42, 570-578.
18.  Hou P., Cheng X., Qian J., Zhang R., Cao W. & Shah S.P. 2015 Characteristics of surface-treatment of nano-SiO2 on the transport properties of hardened cement pastes with different water-to-cement ratios. Cement and Concrete Composites, 55, 26-33.
19. Consoli N.C., Prietto P.D.M., da Silva Lopes L. & Winter D. 2014 Control factors for the long term compressive strength of lime treated sandy clay soil. Transportation Geotech., 1, 129-136.
20. Salman M., Cizer Ö., Pontikes Y., Vandewalle L., Blanpain, B. & Van Balen K. 2014 Effect of curing temperatures on the alkali activation of crystalline continuous casting stainless steel slag. Construction and Building Materials, 71, 308-316.
21. Rao S.M. & Shivananda P. 2005 Role of curing temperature in progress of lime-soil reactions. Geotech. and Geological Eng., 23, 79-85.
22. Bell F.G. 1996 Lime stabilization of clay minerals and soils. Eng. Geology, 42, 223-237.
23. da Luz C.A. & Hooton R.D. 2015 Influence of curing temperature on the process of hydration of supersulfated cements at early age. Cement and Concrete Research, 77, 69-75.
24. Kuo W.T. & Shu C.Y. 2015 Effect of particle size and curing temperature on expansion reaction in electric arc furnace oxidizing slag aggregate concrete. Construction and Building Materials, 94, 488-493.
25. ASTM 2006 American Society for Testing and Materials. Philadelphia, 4.08.
26. EPA 1983 Process design manual: land application of municipal sludge. Res. Lab. EPA-625/1-83-016.
27. Asavapisita S., Nanthamontry W. & Polprasert C. 2001. Influence of condensed silica fume on the properties of cement-based solidified wastes. Cement and Concrete Res., 31, 1147-1152.
28. Goodarzi A.R. & Salimi M. 2015 Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag. Appl. Clay Sci., 108, 61-69.
 
29. Di Sante M., Fratalocchi E., Mazzieri F. & Pasqualini E. 2014 Time of reactions in a lime treated clayey soil and influence of curing conditions on its microstructure and behavior. Appl. Clay Sci., 99, 100-109.
30. Tran T.D., Cui Y.J., Tang A.M., Audiguier M., & Cojean R. 2014 Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay. Rock Mechanics and Geotech. Eng., 6, 399-404.
31. McCarthy M.J., Csetenyi L.J., Sachdeva A. & Dhir R.K. 2012 Identifying the role of fly ash properties for minimizing sulfate-have in lime-stabilized soils. Fule, 92, 27-36.
32. Kalkan E. 2011 Impact of wetting-drying cycles on swelling behavior of clayey soils modified by silica fume.  Appl. Clay Sci., 52, 345-352.