هیدرودینامیک سه بعدی شکست ناگهانی سد در مسیرهای قوسی

نویسندگان
دانشگاه محقق اردبیلی
چکیده
در این مقاله، هیدرودینامیک سه بعدی شکست سد در مسیرهای قوسی بصورت عددی مدلسازی شده و تاثیر زاویه و شعاع انحنای قوس بر الگو و نحوه حرکت موج سیلاب بررسی شده است. هدف اصلی، بررسی تفاوت ها و تشابه های پدیده شکست سد در مسیرهای مستقیم و قوسی می باشد. نتایج حاصله نشان داد که در لحظات اولیه شکست سد در مسیر مستقم، بخاطر تاثیر موج دینامیکی، یک پیک موضعی در هیدروگراف سیلاب رخ می هد و تا فاصله ای در پائین دست سد این پدیده حفظ می شود. در حالیکه در بازه های قوسی بواسطه نامتعادل شدن موج سیلاب پیش رونده، چنین پدیده ای تنها در محل سد رخ داده و به سرعت از بین می رود. وجود بازه قوسی باعث کاهش شتاب حرکت موج سیلاب شده و تاثیر قوس بر روند حرکت موج سیلاب در امتداد جداره داخلی بسیار بیشتر از جداره های خارجی و خط مرکزی کانال می باشد. تغییر شعاع انحنا تاثیر بسزایی بر حرکت موج سیلاب در امتداد جداره داخلی قوس داشته ولی تاثیر این پارامتر در سرعت حرکت موج سیلاب در امتداد جداره بیرونی و خط مرکزی کانال زیاد نمی باشد. مسیر قوسی فقط بر شاخه صعودی هیدورگراف سیلاب و مشخصات نقطه پیک تاثیر گذار بوده و شاخه نزولی مشابه مسیر مستقیم می باشد.

کلیدواژه‌ها


عنوان مقاله English

Three Dimensional Hydrodynamics of Sudden Dam Break in Curved Channels

نویسندگان English

A. safarzadeh
A. safarzadeh
m.ardabily
چکیده English

In this paper, the dam break phenomena has been simulated in curved rivers using 3D numerical model, Flow-3D. It utilizes the finite volume scheme for structured meshes was used for solving the unsteady Reynolds-averaged Navier-Stokes equations in conjunction with the RNG k-ε closure model. In the utilized software, the Fractional Area/Volume Obstacle Representation (FAVOR) method is used to inspect the geometry in the finite volume mesh. FAVOR appoints the obstacles in a calculation cell with a factional value between 0 to 1 as obstacle fills in the cell. Fluid surface shape is illustrated by volume-of-fluid (VOF) function F(x,y,z,t). With the VOF method, grid cells are classified as empty, full, or partially filled with fluid. Cells are allocated in the fluid fraction varying from zero to one, depending on fluid quantity. The pressure and velocity are coupled implicitly by using the time-advanced pressures and time-advanced velocities in the momentum and continuity equations, respectively. FLOW3D solves these semi-implicit equations iteratively using relaxation techniques. In this paper the GMRES technique has been used as pressure implicit solver. A flux surface is a diagnostic feature in FLOW-3D for computing fluid flow rates. It can be used to obtain time-dependent information about the flow in different parts of the domain. A typical flux surface is a 100% porous baffle with no flow losses, so it does not affect the flow in any way. This feature gives the opportunity to determine the flood hydrograph at various stations downstream of the dam. Effects of curve angle and radious of curvature on the flood wave propagation and unsteady flow features along the curved reach, downstream of the dam has been investigated. Results showed that at the initial instants of the dam break in the straight channel, due to the effects of the dynamic wave, flood hydrographs at the dam location and at a distance downstream of the dam have local peak values, while in the curved chnnel cases, the flood wave becomes unstable immediately after the dam break and the local peak occures just at the dam section. The curved reach decelerate the flood wave propagation compared to the straight channel. Effect of channel curvature on the movement of the flood wave along the inner bank is higher than the outer bank and also the centerline of the curved channel. By decreasing the central radious of the bend, slope of the rising limb of the hydrograph and also the peak discharge, attenuates. Furthermore, the peak discharge time reduces. Unlike to effects of the curvature of the bend, increasing the bend angle does not affect the peak discharge. Changing the bend curvature and curve angle has no effect on the falling limb of the flood hydrograph at various stations downstream of the dam.

کلیدواژه‌ها English

Dam Break
River bend
Flood wave
Numerical model
Dynamic wave
[1] Stansby, P., Chegini, A. & Barnes, T. 1998. The initial stages of dam-break flow. Journal of Fluid Mechanics, 374, 407-424.
[2] Lauber, G., & Hager, W. H. 1998. Experiments to dambreak wave: horizontal channel. Journal of Hydraulic Research. 36 (3), 291–307.
[3] US Army Corps of Engineers. 1960. Floods resulting from suddenly breached dams.  Miscellaneous Paper No. 2–374, Waterways Experiment Station, Vicksburg, MS.
[4] Soares Frazao, S., & Zech, Y. 1999. Effects of a sharp bend on dam-break flow” Proc., 28th IAHR Congress, Graz, Austria, Technical Univ. Graz, Austria.
[5] Soares-Frazão, S. & Zech, Y. 2002. Dam-break in channels with 90bend. Journal of Hydraulic Engineering. 128(11), 956–968.
[6] Soares-Frazão, S. & Zech, Y. 2007. Experimental study of dam break flow against an isolated obstacle. Journal of Hydraulic Research, 45(Extra Issue), 27–36.
[7] Soares-Frazão, S. 2007. Experiments of dam-break wave over a triangular bottom sill. Journal of Hydraulic Research, 45(Extra Issue), 19-26.
[8] Miller, S. & Chaudhry, H. 1989. Dam‐ break flows in curved channel. Journal of Hydraulic Engineering, 115(11), 1465–1478. 
[9] Bell, W. S., Elliot, R. C. & Chaudhry, M. H. 1992. Experimental results of two-dimensional dam-break flows” Journal of Hydraulic Research, 30(2), 225-252.
 [10] Flow-3D® Help, Ver. 10.0.1, 2011, Flow science.