مطالعه عددی رفتار چرخه ای و خرابی مهاربندهای همگرای مرکب جفت نبشی

نویسندگان
1 هیئت علمی گروه مهندسی سازه دانشکده فنی و مهندسی دانشگاه تربیت مدرس
2 دانشگاه تربیت مدرس
چکیده
قاب های مهاربندی همگرای مرکب جفت نبشی از جمله سامانه های متداول فولادی مقاوم در برابر بارهای جانبی می باشند. ضوابط لرزه ای آیین نامه AISC در مورد مهاربندهای مرکب همگرای ویژه الزام می دارد که لاغری اجزای منفرد مهاربند بین اتصال دهنده ها از 4/0 برابر لاغری حاکم بر عضو فراتر نرود. همچنین هر گونه جوشکاری برای اتصال اعضای مهاربند مرکب در محدوده یک چهارم میانی طول آزاد دهانه مهاربندی مجاز شمرده نشده است. در این پژوهش ضوابط لرزه ای آیین نامه ای قاب های مهاربندی همگرای ویژه قطری و ضربدری مرکب، با استفاده از زیر سازه ای متشکل از یک طبقه و یک دهانه و با اعمال بار چرخه ای، به صورت عددی مورد مطالعه قرار گرفته است. به منظور ارزیابی بهتر لرزه ای و شکل پذیری نهایی در نمونه های عددی، از مفهوم کرنش خمیری معادل برای پیش بینی شکست سامانه استفاده شده است. نتایج نشان می دهد که افزایش تعداد بست ها و یا کاهش فاصله بین آن ها در طول عضو مرکب، به دلیل تمرکز تغییر شکل های غیر ارتجاعی اجزای تک در بین بست ها نمی تواند لزوما باعث بهبود رفتار سامانه مهاربندی گردد. همچنین رعایت ضابطه نسبت لاغری اجزای منفرد مهاربند بین اتصال دهنده ها به لاغری حاکم بر عضو در مهاربندهای همگرای ویژه مرکب، محافظه کارانه می باشد. در مجموع در مهاربندهای جفت نبشی، اتصال مقاطع به صورت جلو به جلو از منظر چرخه ای و خرابی عملکرد مطلوب تری نسبت به نمونه مشابه در حالت پشت به پشت نشان می دهد.

کلیدواژه‌ها


عنوان مقاله English

Numerical study of cyclic and failure behavior of built-up concentric braces containing double angle sections

نویسندگان English

Ali Akbar Aghakouchak 1
Amin Izadi 2
Ali Akbar Aghakouchak 1
چکیده English

The most important characteristic of brace frames is their significant and appropriate stiffness as well as their compression strength against earthquake forces. Built-up special concentrically braced frames (SCBFs), which contain double angle braces, are among the common steel structural systems resisting lateral loads. Along the built-up brace length, the stitch and connector distances make significant role in cyclic and ductility behavior of braced frames due to possibility of out of plane buckling.The results of experimental studies of built-up double angle braces illustrate that setting the stitches closer to each other can improve the post buckling behavior of systems, resulting in increasing the final compression strength, close to box-shaped brace strength. In addition, an individual member buckling is possible by increasing the stitch distances along built-up braces. According to AISC seismic provisions regarding built-up SCBFs, the slenderness ratio of individual elements between the connectors should not exceed 0.4 times the governing slenderness ratio of the built-up member. Also, connecting built-up members by the use of welding is not permitted within the middle one-fourth of the clear brace length. In fact, AISC seismic provision has prohibited the use of stitches and connectors in the protected zones of built-up specially concentrically braced frames such as the center one-fourth of the clear brace length and a zone adjacent to each connection equal to the brace depth in the plane of buckling.
In this research, seismic provisions related to built-up diagonal and X-braced SCBFs are numerically investigated under cyclic loading using a single-bay single-story frame. The numerical study is performed on models, which contains parameters such as back-to-back and face-to-face connection types of built-up members. Seismic behavior of these braces are investigated from the view points of cyclic and failure behavior. This investigation is performed on both types of diagonal and X-braced steel frames. The cyclic behavior of systems is studied based on post buckling capacity, structure initial stiffness, and final compression strength. Failure behavior of systems is investigated with regard to failure cycle and ductility capacity. In order to evaluate of seismic behavior and ultimate ductility of the numerical models, regarding to proximity of initiation and propagation of steel cracks, the concept of plastic equivalent strain is used to predict system failure.
The results of this study show that increasing the number of stitches or decreasing their distances along the length of the built-up members may not necessarily improve behavior of braced systems.That means inelastic deformation consent will probably occur in individual elements between stitches resulting in earlier failure of braces. Therefore, current seismic provisions such as not exceeding the slenderness ratio of individual elements between stitches from 0.4 times of the governing slenderness ratio of the built-up member for compression sections, are conservative in SCBFs and can be changed according to the type of braces. In addition, Failure of double angle back-to-back diagonal braces occurs sooner in comparison to face-to-face braces. Also, in X-braced frames, cyclic and failure behavior of built-up face-to-face braces are more desirable than the similar back-to-back braces in general.

کلیدواژه‌ها English

Build-up concentrically braced frames
double angle
plastic equivalent strain
back-to-back
face-to-face
[1] Aslani, F., & Goel, S. (1991). An analytical criterion for buckling strength of built-up compression members. Engineering Journal, AISC. 28(4),159-168.
[2] AISC-360 A. Steel Construction Manual; American Institute of Steel Construction. Inc.; 2005.
[3] Liu, J., Lue, D., Lin, C. (2009). Investigation on slenderness ratios of built-up compression members. Journal of Constructional Steel Research. 65(1):237-248.
[4] AISC-360, A. Steel Construction Manual; American Institute of Steel Construction. Inc.; 2010.
[5] Design and Performance of Seel Structures. Building and Urban Ministry, 2013 (In Persian).
 [6] Seismic, A., Seismic Provisions for Structural Steel Buildings,(ANSI/AISC 341-10). 2010, American Institute of Steel Construction, Chicago, IL.
 [7]- Astaneh-Asl, A., Goel,  S., Hanson, R. (1985). Cyclic  out-of-plane  buckling of double angle bracing. Journal of Structural Engineering, ASCE. 111(5): 1135-1153.
[8] Aslani, F. and S.C. Goel, Stitch Spacing and End Fixity in Seismic-Resistant Boxed Angle Braces.Journal of Structural Engineering, 1992.
118(10):p.2872-2889.
[9] Lee, K., Bruneau, M. (2008). Seismic vulnerability evaluation of axially loaded steel built-up laced members. Earthquake Engineering and Engineering Vibration. 7(2): 113-124.
[10] Jiang, Y.,Tremblay, R., Tirca, L. (2012). Seismic assessment of deficient steel braced frames with built-up back-to-back double angle brace sections using OpenSees modeling. 15 conferrence WCEE. LISBOA
[11] Johnson, S.M., Improved seismic performance of special concentrically braced frames. 2005.
[12] ATC-24,  Guidelines  for  Cyclic  Seismic Testing  of  Components  of  Steel  Structure,
1992.
[13]Yoo, J.H., Analytical investigation on the seismic performance of special concentrically braced frames. 2006: ProQuest.
[14] Alipour, M. and A. Aghakouchak, Numerical
analysis of the nonlinear performance of concentrically braced frames under cyclic loadings. International Journal of Steel Structures, 2013.13(3): p. 401-419.