بررسی طرح اسکله وزنی با تحلیل عددی غیرخطی اندرکنش اسکله و خاک

نویسنده
دانشگاه تربیت مدرس
چکیده
اسکله های وزنی اصلی ترین گزینه اسکله های موازی ساحل بخصوص در شرایطی است که خاک بستر دریا ظرفیت باربری مناسبی داشته باشد. مهمترین عامل تعیین ابعاد این اسکله ها، فشار خاک است که معمولا با استفاده از روابط تحلیلی نظیر مونونوبه-اوکابه ارزیابی می گردد. با توجه به عدم قطعیت این روابط تحلیلی، در این تحقیق سعی شده با استفاده از تحلیل عددی، رفتار غیر خطی خاک در اندرکنش با اسکله وزنی و همچنین اثر صلبیت واقعی بلوک های اسکله در بازپخش فشار خاک زیر اسکله در قیاس با روش های متداول طراحی مورد بررسی قرارگیرد. بدین منظور، اسکله وزنی بندر شهید بهشتی به عنوان مطالعه موردی انتخاب شده و با استفاده از نرم افزارهای FLAC و ANSYS، توزیع فشار خاک زیر این اسکله در شرایط رفتار غیر خطی خاک و صلبیت بلوک ها شبیه سازی شده است. نتایج در مقایسه با روش های تحلیلی مندرج در آیین نامه‌های طراحی موجود (نظیر آیین نامه کارهای دریایی ژاپن) نشان می‌دهد که در شرایط واقعی، توزیع فشار زیر اسکله به دلیل رفتار غیر خطی خاک، یکنواخت تر از مقادیر تحلیلی بوده و همچنین با توجه به عدم صلبیت کامل بلوک های اسکله، محل وقوع حداکثر لنگر خمشی نیز تغییر می‌کند. این موارد در طراحی بلوک های اسکله بخصوص پایین ترین بلوک به عنوان اصلی ترین بلوک پایدار کننده اسکله، تاثیرگذار بوده و لزوم ارزیابی دقیق تر روش‌های تحلیل و طراحی کنونی را آشکار می‌سازد.

کلیدواژه‌ها


عنوان مقاله English

Design of gravity quaywalls via nonlinear analysis of soil-quay ineraction

چکیده English

There are several quay types parallel to the shore line such as the walls constructed by piles, sheetpiles or gravity walls. Among these types of structures, the gravity quaywalls are widely used because of their simplicity of structure and ease of construction. Usually, it is the best alternative particularly in the locations with acceptable soil strengths. Weight of the blocks provide the stability of the quaywall against overturning and sliding and therefore, their dimensions are determined based on the applied loads on the quay structure. The most important load is the soil pressure that increases the lateral loads acting on the quaywall particularly during an earthquake condition. For design, the soil pressure usually converts into a static load by utilizing the seismic coefficient method. Analytical equations such as the Mononobe-Okabe formula are usually employed to calculate the applied soil pressure. However, some researchers believe that these analytical formula do not appropriately express the real behavior of the soil, and therefore, they can not be used for a proper design. There are, actually, some simplified assumptions in calculating the applied soil pressure those decrease the accuracy of the commonly used methods for quaywall design. The main assumptions are neglecting the nonlinear behavior of the soil and neglecting the flexibility of quay blocks. Due to the importance of the soil pressure in the quaywall design, these assumptions are investigated numerically in this study by making use of two well known FLAC and ANSYS softwares. For this purpose, the quaywall of Shahid Beheshti port is selected as a case study and the soil pressure around this quaywall is calculated by modeling the nonlinear behavior of the soil via using the Mohr-Coulomb constitutive model. In addition, the effect of the block rigidity on redistribution of the soil pressure beneath the quay structure is studied by a 3-D modeling of the lowest block located on linear springs (representing the supporting soil). To study the importance of each above mentioned assumption individually, two seperated models are utilized separately. According to the results, the pressure distribution under the quay wall is more uniform in the case of employing the nonlinearity of the soil. The total pressure is, however, less than the total calculated pressure by analytical formula that shows the Mononobe-Okabe formula are not accurate, but its results are overestimated for the studied problem. In addition, results show that the simplified methods can not be used for design of the lowest block because the value and the location of the maximum moment along this block changes due to its rigidity. As a result, neglecting the block deformations what is done in simplified methods is not acceptable for design purposes. It should be noted that the lowest block is so important is providing the global stability of the quaywall because its failure can lead to a total failure of the quaywall. On the other hand, all blocks are supported on this block and consequently, its repair would be too difficult even in the case of any small failure.

کلیدواژه‌ها English

Gravity quaywall
Soil pressure
Block rigidity
Nonlinear beahavior
Numerical analysis
[1] Alyami, M., Rouainia, M., Wilkinson, S.M., Numericalanalysisofdeformationbehaviourofquaywal under earthquakeloading, Soil Dynamics and Earthquake Engineering 29 (2009) 525–536
[2] Nishimura, S., Takahashib, H., Morikawa, Y., Observations of dynamic and non-dynamic interactions between a quay-wall and partially stabilized backfill, Soils and Foundations 2012; 52(1): 81–98
[3] Cihan, H.K., Ergin, A., Cihan, K., Guler, I., Dynamic responses of two blocks under dynamic loading usingexperimental and numerical studies, Applied Ocean Research 49 (2015) 72–82
[4] Khosrojerdi, M., Pak, A., Numerical investigation on the behavior of the gravity waterfront structures under earthquake loading, Ocean Engineering, Vol. 106, 2015, 152–160  
[5]           E.A.U (1996) "Recommendation of Committee for Waterfront Structures, Harbors and Water Ways",7th. ed., Berlin, Ernst and John
[6] Sadrekarimi A., Ghalandarzadeh A.,  Sadrekarimi J., (2008); Static and dynamic behavior of hunchbacked gravity quay walls. Soil Dynamics and Earthquake Engineering, J 28 (2008) 99–117.
[7] Sadrekarimi A., (2010). Pseudo-static lateral earth pressures on broken-back retaining walls. Canadian Geotechnical Journal, J. 47: 1247–1258. doi:10.1139/T10-025.
[8] Shafieefar M., Mirjalili A., (2006). Optimum design of gravity quaywalls using sequential quadratic programming, Journal of transportation research 3 (3) (In Persian)
 [9] OCDI (2002); Technical standard and commentaries for port and harbor facilities in japan, The Overseas Coastal Area Development Institute of Japan.
[10] Nakamura, S., Reexamination of Mononobe-Okabe theory of gravity retaining walls using centrifuge model tests, Soil and Founadtions Vol. 46 (2006)  No. 2  P 135-146
[11] Maleki, S., Mahjoubi, S., A New Approach for Estimating the Seismic Soil Pressure on Retaining Walls, Scientia Iranica- Transaction A: Civil Engineering, Vol. 17, No. 4, pp. 273-284, Sharif University of Technology, August 2010
[12] Kim, S.R., Jangb, I.S., Chungc, C.K., Kim, M.M., Evaluation of seismic displacements of quay walls, Soil Dynamics and Earthquake Engineering 25 (2005) 451–459
[13] Jo, S.B., Ha, J.G., Lee, J.S., Kim, D.S., Seismic earth pressure on inverted T-shape retaining structures via dynamic centrifuge testing, 10th U.S. National Conference on Earthquake Engineering, Frontiers of Earthquake Engineering, July 21-25, 2014, Anchorage, Alaska
[14] Lin, Y.L., Leng, W.M., Yang, G.L., Zhao, L.H., Li, L., Yang, J.S., Seismic active earth pressure of cohesive-frictional soil on retaining wall based on a slice analysis method, Soil Dynamics and Earthquake Engineering 70 (2015) 133–147
 
[15] PIANC (2006); Seismic Design Guidelines for Port Structures (formerly the Permanent International Association for Navigation Congress); ISBN 90 265 1818 8.
 [16] Report No.: SCE 10366 OGPD 09 CS RP 405, (2013); Shahid-Beheshti port development. "Structural Design of Multipurpose and Container Berth".
[17] BS6349-4 (1994); British standard, maritime structures- Part 4: Code of practice for design of fendering and mooring systems.
[18] Roth, W.H., Scott, R.F., and Cundall, P.A. 1986. "Nonlinear Dynamics Analysis of a Centrifuge Model Embankment" Proceedings of the 3rd US National Conference on Earthquake Engineering. Charleston, South Carolina.
[19] Roth, W.H., and Inel, S. 1993. "An Engineering Approach to the Analysis of VELACS Centrifuge Tests" Verifications of Numerical Procedures for the Analysis of Soil liquefaction Problems. Arulanandan and Scott (eds.). A.A. Balkema, Rotterdam.
[20] Dickenson, S.D. and Yang, D.S. "Seismically-Induced Deformations of Casson Retaining Walls in Improved Soils" Proceedings form the 1998 ASCE Geotechnical Earthquake Engineering and Soil Dynamics Conference. Seattle, WA, USA.
[21] McCullough, N. J. and Dickenson, S.D. "Estimation of Seismically Induced Lateral Deformations for Anchored Sheetpile Bulkheads" Proceedings form the 1998 ASCE Geotechnical Earthquake Engineering and Soil Dynamics Conference. Seattle, WA, USA.
[22] Iranian Code 631, (2013); Design Standard for coastal structures; part2: Design conditions, 1392