اثر مولفه قائم زلزله روی تقاضای لرزه‌ای قابهای بتنی میان‌مرتبه

نویسندگان
1 دانشگاه بززگمهر قائنات
2 استادیار گروه مهندسی زلزله دانشکده عمران دانشگاه سمنان
3 دانش آموخته کارشناسی ارشد
چکیده
با توجه به خسارتهای سازه ای به وجود آمده در زمین لرزهای نزدیکگسل اخیر که به مؤلفه ی قائم زمین لرزه نسبت داده میشودو بروز آسیب های متعدد در ستون‌های بتنی که باعث تخریب پیشرونده نیز می‌شود، علاقه مندی برای بررسی اثر مؤلفه ی قائم در پاسخ های لرزه‌ای افزایش یافته است.در این پژوهش، قابهای بتنی میان‌مرتبه طراحی شده با ضوابط لرزه‌ای، تحت تحریک همزمان مولفه قائم و افقی زلزله و تحریک مولفه افقی زلزله به تنهایی قرار گرفت. برای تحلیل تاریخچه زمانی از دو گروه شتاب نگاشت‌های نزدیک و دور از گسل، استفاده گردید. پاسخ‌های سازه ای نیروی محوری کششی، فشاری و نوسان نیروی محوری ستون‌ها، نسبت نیاز به ظرفیت برشی ستون‌ها و لنگر بیشینه ی وسط دهانه ی تیر، در دو حالت با و بدون تحریک مؤلفه ی قائم، مقایسه شد و اثر حضور مؤلفه ی قائم، برای شتاب نگاشت های دور و نزدیک گسل، برای دهانه ی کناری و میانی، قابهای بتنی به صورت مجزا به دست آمد .نتایج نشان می‌دهد که نیروی کششی و بروز کشش در ستون های کناری بحرانیتر از ستونهای میانی، خواهد بود. حضور مؤلفه ی قائم باعث کاهش نیروی فشاری کمینه و حرکت به سمت کشش می شود که این مقدار در بحرانی ترین حالت، به صورت میانگین بین شتاب نگاشتهای نزدیک گسل به 84% کاهش میرسد. حضور مؤلفه ی قائم باعث افزایش نیاز به ظرفیت برشی میشود و در بیشترین حالت به 31% افزایش نسبت نیاز به ظرفیت برشی منجر میشود.

کلیدواژه‌ها


عنوان مقاله English

Vertical Earthquake Component Effect on Seismic Demand of Medium Rise Concrete Frames

نویسندگان English

mokhtar ansari 1
maeud ansary 3
1 univercity
چکیده English

According to the structural damages observed after the recent near-field earthquakes which are attributed to the vertical component of the ground motion as well as concentration of the damages in column members leading to progressive structural collapse, investigation of ground motion’s vertical component effect has been widely regarded in recent studies. This component is considered less than other component of earthquake and the seismic design codes has been little attention. While the earthquake in near fault zones that has large vertical acceleration comare with horizontal acceleration, caused extensive damage. Damage of concrete columns is an example of the negative effects of the vertical component. vertical component of earthquake is considered in design of spesific members on the recommendation of seismic codes such as the EC-8 and FEMA 356. the design is intended to have with the intended use of the scaled horizontal component , Design this can be done that is unrealistic and will lead to incorrect answers due to lack of stimulation due to the specific characteristics of vertical component of earthquake and structural properties in the vertical direction, also The vertical component of earthquake is less studied in seismic risk analysis. In this study, the effects of vertical earthquake excitations on medium-rise concrete moment frames are investigated in two separate stage including near field and far field records.
In this research, various structural models rep resentative of real structures designed in accordance to seismic codes and under actual gravitational loads have been subjected, simultaneously, to horizontal and vertical components of near- and far-field ground motion records at two stages. Nonlinear time history and progressive dynamic analyses have been performed in this regard. Furthermore, the effect of elevation or reduction of initial gravitational forces as well as columns’ initial axial forces have been investigated by applying differing gravitational loading coefficients. Structural response parameters including tensional and compressional axial loads of the columns as fluctuating forces, columns’ uplift forces at various plan positions and under various gravitational coefficients, the interactive axial-flexural forces of the columns at different gravitational coefficients, shear demand-to-capacity of columns, axial deformation of the columns in presence and absence of vertical component of the earthquake, have been comparatively investigated and the effect of vertical ground motion component has been assessed, separately, for far- and near-field acceleration records and for external and internal columns placed at different stories.
The obtained results reveal that tensional uplift forces are more critical in external columns than the internals. This is mainly true for lower stories while at the upper stories the tensional forces experienced by internal columns are seen to be more critical. Existence of vertical component of the earthquake leads the minimum compression forces to increase and change toward tension range. The amount of this reduction has been shown to reach the value of 84% in the more extreme case. It was also seen that for smaller gravitational coefficients, tensional axial forces are more frequently observed. Presence of earthquake’s vertical component has been shown to amplify the columns’ shear demand by values that reach 31% at the most extreme cases.

کلیدواژه‌ها English

vertical component of earthquake
Axial Force
Shear Demand VS Capacity
Near-field earthquake
[1]     Elnashai; A. S; Papazoglou; A. J; "Vertical earthquake ground motion - Evidence, effects and simplified analysis procedures"; Research Report ESEE-95/6; Imperial College, December,1995.
[2]     Elnashai; A. S; Papazoglou; A. J; "PROCEDURE AND SPECTRA FOR ANALYSIS OF RC STRUCTURES SUBJECTED TO STRONG VERTICAL EARTHQUAKE LOADS"; Journal of Earthquake Engineering; 1(1), 1997, 121-155.
[3]                 Broderick; B. M; Elnashai; A. S; Ambraseys; N. N; Barr; J. Goodfellow; R; and Higazy; M; "The Northridge (California) earthquake of 17 October 1994; observations, strong-motion and correlative response analyses"; Engineering Seismology and Earthquake Engineering; Report No. ESEE 4/94, 1994,
[4]                 Kim; S. J; Elnashai; A. S; "Seismic assessment of RC structures considering vertical ground motion"; MAE center report; no. 08-03. USA: University of Illinois at Urbana-Champaign, 2008.
[5]                 Kim; S.J; Holub; C.J; Elnashai; A.S; "Experimental investigation of the behavior of RC bridge piers subjected to Horizontal and vertical earthquake motion" ;Engineering Structures; 33(7), 2011, 2221-2235.
[6]                 Kim; S.J; Holub; C.J; Elnashai; A.S; "Analytical assessment of the effect of vertical earthquake motion on RC bridge piers"; ASCE J StructEng; 137(2), 2011, 252–60.
[7]                 Kim; S.J; Elnashai; A.S; "Characterization of shaking intensity distribution and Seismic assessment of RC buildings for the Kashmir (Pakistan) earthquake of October 2005"; Journal EngStruct; 31(12) ,2009, 2998–3015.
[8]                 Somervile; P.G; Graves; R; "Conditions that give rise to unusually large long period ground motion"; The Structural Design of tall building;2(3), 1993, 211-232.
[9]                 Somerville; P; "The characteristics and Quantification of near fault ground motions" ;Proc., FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway Facilities; Tech. Rep. No. NCEER-97-0010, National Center for Earthquake Engineering Research, State Univ. of New York at Buffalo, N.Y, 1997,  205-252.
[10]             Di Sarno; L; Elnashai; A.S; Manfredi; G; " Assessment of RC columns subjected to horizontal and vertical ground motions recorded during the 2009 L’Aquila (Italy) earthquake"; Engineering Structures; 33(2), 2011, 1514–1535.
[11]             Newmark; N. M; Blume; J. A; Kapur; K. K; "Seismic design spectra for nuclear power plants"; J. Power Div; 99(2), 1973,  287-303.
[12]             Collier; C. J; Elnashai; A. S; "A PROCEDURE FOR COMBINING VERTICAL AND HORIZONTAL SEISMIC ACTION EFFECTS"; Journal of Earthquake Engineering;5(4), 2001,  521-539.
[13]             American Concrete Institute; ACI; "Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05)", 2005.
[14]             Elnashai; A.S; Papanikolaou; V; Lee; D; "ZeusNL—a system for inelastic analysis of structures"; Mid-America Earthquake Center; University of Illinois at Urbana-Champaign. [CD-Release 04-01] ,2004.
[15]             Filippou; F.C; Issa; A; "Nonlinear analysis of reinforced concrete frames under cyclic load reversals"; EERC report 88-12. Earthquake Engineering Research Center, Berkeley,1988.
[16]             Taucer; F.F; Spacone; E; and Filippou; F.C; "A Fiber Beam-Column Element for Seismic Response of Reinforced Structures"; Report number UCB/EERC-91/17, Earthquake Engineering Research Center, 1991.
[17]             Filippou; F.C; D'Ambrisi; A; and Issa; A; "Nonlinear static and dynamic analysis of reinforced concrete subassemblages"; Report No. UCB/EERC–92/08, Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 1992.
[18]             Kwak; H.G; Filippou; F.C; "Nonlinear FE Analysis of R/C Structures under Monotonic loads";Journal of Computers & Structures;65(1), 1997, 1-16.
[19]             Spacone; E; Filippou; F.C; and Taucer; F.F; "Fibre Beam-Column Model for Non-linear Analysis of R/C frames: part I. formulation"; Journal of Earthquake Engineering and Structural Dynamics; 25, 1996,  711-725.
[20]             Beery; P.M; Eberhand; O.M; "Performance Modeling Strategies for Modern Reinforced Concrete Bridge Column"; PEER-2007/07, Pacific Earthq. Engrg. Res. Center; Univ. of California at Berkeley, California, 2007.
[21]             Hachem; M.M; Mahin; S.A; and Moehle; J.P; "Performance of Circular Reinforced Concrete Bridge Columns Under Bidirectional Earthquake Loading"; PEER-2003/06, Pacific Earthquake Engineering Research Center; Univ. of California at Berkeley, California,2003.
[22]             Ranf; T.R; Eberhand; M; "Model Selection for Performance-Based Earthquake Engineering of Bridges"; Ph.D thesis; University of Washington, 2007.