ارائه مدل رفتاری برای میراگرهای ویسکوز انقباض محوری

نویسندگان
1 کارشناسی ارشد پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله
2 عضو هیئت علمی پژوهشگاه زلزله شناسی و مهندسی زلزله
چکیده
در دهه‌های اخیر تحقیقات گسترده‌ای در ارتباط با قطعات مستهلک کننده انرژی انجام شده که در این میان میراگرهای ویسکوز، بخش مهمی از این تحقیقات را به خود اختصاص داده‌اند. مطالعات انجام شده نشان می‌دهد که رفتار این میراگرها تنها با ثابت میرایی آن‌ها قابل بیان نیست بلکه عواملی از قبیل رفتارِ سرعتی غیرخطی، سختی محوری هرچند ناچیز و اصطحکاک داخلیِ میراگر از عوامل مهم تأثیرگذار در رفتار این سیستم‌های جاذب ‌انرژی هستند. همچنین دامنه فرکانسی اعمال بار، انعطاف پذیری غلاف پیرامونی هسته‌ی میراگر، تراکم پذیری مایع درونی آن، اثرات حرارتی نیز در تعیین مشخصه‌های رفتاری این میراگرها تأثیر گذارند. در مطالعات تجربی که تاکنون برای تعیین مشخصه‌های رفتاری این میراگرها صورت پذیرفته و همچنین ادبیات فنی موجود، ارتباط موثری بین موارد ذکر شده با مکانیک رفتاری این میراگرها دیده نمی شود.در مطالعه حاضر اقدام به ساخت نمونه‌‌ای از میراگر ویسکوزِ انقباض محوری، با ظرفیت نیرویی 500 کیلونیوتن و دامنه‌ی تغییر مکانی 150 میلی‌متر شد. رفتار مکانیکی میراگر جدید، تحت آزمایش‌های چرخه‌ای مورد بررسی قرار گرفت که در نهایت مشخصه‌های رفتاری آن در فرم یک مدل ارائه شده است. میراگر ساخته شده، طی چرخه های مختلف بارگذاری به طور متوسط دارای 10 کیلونیوتن نیروی اصطکاک اولیه است که می‌توان از آن به عنوان فیوز عملکردی میراگر بهره گرفت. همچنین با توجه به نحوه‌ی ساخت میراگر (عدم تقارن در ساخت بِلوزها) افزون بر نیروی میرایی، نیروی اصطکاکی ثانویه‌ای، وابسته به فشار روغن به میزان 50 کیلونیوتن وجود دارد که باعث افزایش ظرفیت نیرویی میراگر و بهبود منحنی‌های رفتاری آن شده است.

کلیدواژه‌ها


عنوان مقاله English

Behavioral model for a Contractable Viscous Dashpot

نویسندگان English

shakiba mousavi 1
mansour ziyaeefar 2
چکیده English

Damping is one of many different methods that have been proposed for allowing a structure to achieve optimal performance when it is subjected to seismic, wind, storm, blast or other types of transient shock and vibration disturbances. Conventional approach would dictate that the structure must inherently attenuate or dissipate the effects of transient inputs through a combination of strength, flexibility, and deformability. The level of damping in a conventional elastic structure is very low, and hence the amount of energy dissipated during transient disturbances is also very low. During strong motions, such as earthquakes conventional structures usually deform well beyond their elastic limits, and eventually fail or collapse. Therefore, most of the energy dissipated is absorbed by the structure itself through localized damage as it fails. The concept of supplemental dampers added to a structure assumes that much of the energy input to the structure from a transient will be absorbed, not by the structure itself, but rather by supplemental damping elements.
Fluid viscous dampers are known as energy dissipating devices with high capacity in reducing seismic effect on buildings Fluid dampers which operate on the principle of fluid flow through orifices have found numerous applications in the shock and vibration isolation of military and aerospace hardware and in wind vibration suppression of missile launching platforms. fluid Viscous damping reduces stress and deflection because the force from the damping is completely out of phase with stresses due to flexing of the columns. This is only true with fluid viscous damping, where damping force varies with stroking velocity. Other types of damping such as yielding elements, friction devices, plastic hinges, and viscoelastic elastomers do not vary their output with velocity; hence they can and usually do, increase column stress while reducing deflection.
Determination of mechanical characteristics of these devices is usually based on experimental studies using cyclic tests with different amplitudes and frequencies.
In this work, a new type of viscous damper is chosen for experimental studies in which the main body of the devices has been made of contractible steel bellows (developed in IIEES).
The nominal force capacity of dashpot is about 500kN and its maximum stroke is around 150 millimeters. Maximum axial force in damper device will be reached about 300kN during the test. A model for representative the above viscous device should also include axial flexibility for device in the form of Kelvin or Maxwell models. Finally this model represents the general behavior of the damper based on various factors that effects its performance. In this study, a nonlinear viscous behavior has been shown in the device with respect to velocity. During Cyclic test the average of initial frictional force is about 10kN, which can be used as a functional fuse for damper. In addition, the damping force, a second friction force is about 50kN that depends on oil pressure, which increases the capacity of damper and improve its behavior. Results show that the friction force can be considered as an effective factor involved in energy dissipation of dampers.

کلیدواژه‌ها English

Viscous Damper
Dissipating Devices
Mechanical Characteristic
[1]FEMA 445. Next-Generation Performance-Based Seismic Design Guidelines2000, FederalEmergency Management Agency: Washington DC, USA.
 [2] ASCE/SEI Seismic Rehabilitation Standards Committee 2007, Seismic rehabilitation of existing buildings (ASCE/SEI 41-06). American Society of Civil Engineers, Reston, VA.‏
[3] Eurocode 8: Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Actions and Rules for Buildings. European Standard EN 1998-1:2004, Comite European De Normalisation : Brussels, Belgium, 2004.
 [4] Soong T.T. & Dargush G.F. 1997 Passive Energy Dissipation Systems in Structural Engineering. Wiley, New York.
[5] Lavan O. & Dargush G.F. 2009 Multi-objective evolutionary seismic design with passive energy dissipation systems. Journal of Earthquake Engineering, 13(6), 758-790.‏
[6] Fouroughikia B. 2007 Recommend, Build and Test a Viscous Damper Controllable with Modern Features. Master's thesis, International Institute of Earthquake Engineering and Seismology. (In Persian)
[7] Pezeshki H. 2010 Experimental Studies on a Controllable Nonlinear Viscous Dashpot for Near-field Application in Base Isolated Buildings. Master's thesis, International Institute of Earthquake Engineering and Seismology. (In Persian)
  [8]  Taylor D. P.  & Constantinou M. C. 1998 Fluid dampers for applications of seismic energy dissipation and seismic isolation. Taylor Devices, Incorporated.
[9]  Dong B., Sause R. & Ricles J. M. 2016 Seismic response and performance of a steel MRF building with nonlinear viscous dampers under DBE and MCE. Journal of Structural Engineering, 142(6), 04016023.‏
                 [10]Whittaker A. S. & Constantinou M. C. 2004 Chapter 12, Seismic Energy Dissipation Systems for Buildings. Borzognia and Bertero (eds), CRC Press LLC.‏
[11] Mousavi Sh. 2014   Investigation On The Behavior of a New Contractable Viscous Dashpot In Mass Isolation Building( Experimental Studies). Master's thesis, International Institute of Earthquake Engineering and Seismology. (In Persian)