تشخیص خسارت لرزه اساس دیوارهای مصالح بنایی به کمک مدل سازی به روش المان مجزا

نویسندگان
دانشگاه تربیت مدرس
چکیده
روش‌های تشخیص خسارت لرزه‌اساس به دلیل بینشی که از رفتار دینامیکی کلی سازه می‌دهند، برای ارزیابی خسارت در سازه‌های بنایی، مورد استقبال هستند. با توجه به ناهمگنی و پیچیدگی رفتار سازه‌های بنایی که اکثراً ناشی از رفتار غیر‌خطی سطوح تماس می‌باشد، مدل‌سازی دقیق آن‌ها امری چالش برانگیز است. نظر به ماهیت ناپیوسته و مرکب سازه‌های مصالح بنایی، مدل‌سازی به روش المان مجزا یکی از روش‌های مناسب برای مدل‌سازی این گونه سازه‌ها، مخصوصاً رفتار غیرخطی آن‌ها می‌باشد. بدین منظور در اولین گام در پژوهش حاضر، دیوارهای مصالح بنایی به روش ریزمدل‌سازی در نرم‌افزار 3DEC مدل‌سازی و رفتار غیرخطی آن با نتایج آزمایش‌های معتبر مقایسه و صحت آن مورد بررسی قرار گرفت. با توجه به این‌که نرم‌افزار 3DEC قادر به محاسبه مستقیم فرکانس‌های اصلی سازه نیست، هدف بعدی، ارائه‌ی روشی برای استخراج غیرمستقیم فرکانس و پارامترهای رفتاری دینامیکی در محیط نرم‌افزار المان مجزا می‌باشد. نتایج روش پیشنهادی مذکور با نتایج تحلیل فرکانسی در روش المان محدود مقایسه و از صحت عملکرد آن اطمینان حاصل شد. در مرحله‌ی بعد، به منظور یافتن رابطه‌ی بین رشد ترک و خسارت در دیوار با رفتار دینامیکی، سازه تحت تأثیر سطوح خسارت مختلف قرار گرفت و در هر سطح خسارت، فرکانس‌های اصلی آن استخراج شدند. در انجام تحلیل‌ها، فرکانس به‌عنوان شاخص رفتار دینامیکی، و جابه‌جایی بالای دیوار به‌عنوان شاخص خسارت انتخاب شدند. بر اساس داده‌های تحلیل شده، علی‌رغم تغییرشکل کوچک سازه با افزایش سطوح خسارت، افت فرکانس نسبی قابل‌توجهی مشاهده می-شود که متناسب با رشد و ظهور ترک در سازه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Vibration-Based Damage Identification of Masonry Walls Using Distinct Element Modeling

نویسندگان English

Navid maddahi
Naser Khaji
M.Sc., Earthquake Engineering, Faculty of Civil and Environmental Engineering,
چکیده English

Dry-joint masonry structures are one of the oldest building techniques from ancient and historical masonry buildings. This method used in building of historical structures that are highly vulnerable today. Also in many masonry structures, mortar strength is affected strongly by duration of time and corrosion, so the structure behavior is more likely dependent on the dry-joint characteristics. To assess the existing damages of masonry walls, non-destructive dynamic-based methods are attractive tools as they are able to capture the global structural behavior. In micro-modeling method of this paper, masonry walls are represented by Distinct Element Method (DEM) as assemblies of units consist of block and mortar, which represent an idealization of their discontinuous nature governing their nonlinear mechanical behavior. Due to the heterogeneity and the complexity of the interface’s behavior between blocks and mortar, DEM seems to be the best-adapted to model this kind of structures, in particular for reproducing complex nonlinear post-elastic behavior. At the first step, micro-modeling strategy is used for masonry walls by DEM, and particularly post-elastic behavior is verified with valid experimental data. However, DEM does not directly obtain natural frequencies and mode shapes of the wall via a classic vibrational analysis. Therefore, the second objective of this study is to propose a technique to indirectly identify dynamic characteristics of masonry walls using DEM. The aim of the part is to check the capability of dynamic identification procedures, in the extraction of the dynamic characteristics of the masonry wall in the used DEM software. For this purpose, the dynamic behavior at low vibration levels of an existing masonry building subjected to forced hammer impact test, was investigated. By transforming data collected from dynamic response of the wall, from the time domain to the frequency domain, using Fast Fourier Transform (FFT), we can find natural frequencies from Fourier amplitude spectrum. The proposed technique is then validated by comparison with the results of modal analysis which was carried out using Finite Element Method (FEM). The dynamic characteristics of walls (i.e., natural frequencies and mode shapes) may change when different levels of damage are induced in the wall. The proper knowledge of these variations is a key issue in order to study the seismic demand and seismic performance of structures. Aiming at finding adequate correspondence between dynamic behavior and internal crack growth, several numerical simulations are performed, progressive damage is induced in the wall, and sequential structural frequency identification analysis is then performed at each damage stage. In this paper, frequency and drift are selected as dynamic behavior and crack growth indices, respectively. Quantifying the relative frequency drop shows, despite the shape does not vary significantly with increasing damage, there is a relation between frequency drop and damage variations, based on analyzed data. These properties are firstly modified in the elastic range, and then is developed in the inelastic range with increasing damages. It is also observed that while the failure mode of the wall is diagonal cracking, the in-plain vibration mode shapes are much affected by initiation of crack. On the other hand, modal properties of out-of-plane mode shapes undergoes fewer effects by the diagonal crack.

کلیدواژه‌ها English

damage identification
masonry walls
Distinct Element Method
frequency drop
[1]          Lourenço, P.B., et al., Dry joint stone masonry walls subjected to in-plane combined loading. Journal of Structural Engineering, 2005. 131(11): p. 1665-1673.
[2]          Ramos, L.F., et al., Dynamic structural health monitoring of Saint Torcato church. Mechanical Systems and Signal Processing, 2013. 35(1): p. 1-15.
[3]          Lemos, J.V., Discrete element modeling of masonry structures. International Journal of Architectural Heritage, 2007. 1(2): p. 190-213.
[4]          Carpinteri, A., S. Invernizzi, and G. Lacidogna, In situ damage assessment and nonlinear modelling of a historical masonry tower. Engineering Structures, 2005. 27(3): p. 387-395.
[5]          Ramos, L.F., et al. Damage identification in masonry structures with vibration measurements. in Structural Analysis of Historic Construction: Preserving Safety and Significance, Two Volume Set: Proceedings of the VI International Conference on Structural Analysis of Historic Construction, SAHC08, 2-4 July 2008, Bath, United Kingdom. 2008. CRC Press.
[6]          Michel, C., et al., Quantification of fundamental frequency drop for unreinforced masonry buildings from dynamic tests. Earthquake Engineering & Structural Dynamics, 2011. 40(11): p. 1283-1296.
[7]          Osmancikli, G., et al., Investigation of restoration effects on the dynamic characteristics of the Hagia Sophia bell-tower by ambient vibration test. Construction and Building Materials, 2012. 29: p. 564-572.
[8]          Restrepo Vélez, L.F., G. Magenes, and M.C. Griffith, Dry stone masonry walls in bending—Part I: Static tests. International Journal of Architectural Heritage, 2014. 8(1): p. 1-28.
[9]          Bui, T.T. and A. Limam, Masonry Walls under Membrane or Bending Loading Cases: Experiments and Discrete Element Analysis. Civil-Comp Press, 2012: p. Paper 119.
[10]        Mohebkhah, A., A. Tasnimi, and H. Moghadam, Nonlinear analysis of masonry-infilled steel frames with openings using discrete element method. Journal of constructional steel research, 2008. 64(12): p. 1463-1472.
[11]        Fukumoto, Y., Yoshida, J., Sakaguchi, H., Murakami, A., The effects of block shape on the seismic behavior of dry-stone masonry retaining walls: A numerical investigation by discrete element modeling. Soils and Foundations, 2014. 54(6): p. 1117-1126.
[12]        Baraldi, D., A. Cecchi, and A. Tralli, Continuous and discrete models for masonry like material: A critical comparative study. European Journal of Mechanics-A/Solids, 2015. 50: p. 39-58.
[13]        Bui, T., A. Limam, and Q. Bui, Characterisation of vibration and damage in masonry structures: experimental and numerical analysis. European Journal of Environmental and Civil Engineering, 2014. 18(10): p. 1118-1129.
[14]        Ramos, L., et al. Dynamic monitoring of historical masonry structures for damage identification. in Proc. 26th International Modal Analysis Conference, Orlando, Fl, USA. 2008.
[15]        Brincker, R., L. Zhang, and P. Andersen, Modal identification of output-only systems using frequency domain decomposition. Smart materials and structures, 2001. 10(3): p. 441.