طراحی کنترلر فعال بهینه‌ی سازه‌ها با استفاده از الگوریتم تکامل تفاضلی

نویسندگان
1 عضو هیات علمی گروه سازه دانشکده عمران دانشگاه تبریز
2 فارغ التحصیل کارشناسی ارشد سازه دانشکده عمران دانشگاه تبریز
چکیده
از مهم‌ترین اهداف روش‌های کنترل بهینه‌ی سازه‌ها، دستیابی به حد مطلوب ارتعاشات با صرف انرژی کنترلی حداقل است. در دهه‌های اخیر الگوریتم‌های کنترلی بسیاری پیشنهاد شده‌اند. بخش عمده‌ای از این روش‌ها از طریق بهینه‌کردن یک شاخص عملکرد مرتبه‌ی دوم اقدام به محاسبه‌ی نیروهای کنترل می نمایند. وجود فرضیات ساده‌کننده در فرمول‌بندی، محدودیت روش‌های بهینه‌سازی مورد استفاده در بهینه‌سازی شاخص عملکرد و همچنین عدم ملاحظه‌ی اثر تحریک خارجی در محاسبه‌ی نیروهای کنترل، عملاً حصول جواب بهینه برای مساله‌ی کنترل را دور از دسترس می‌سازد. در این پژوهش الگوریتم کنترلی ارائه می‌شود که با بهره‌گیری از روش بهینه‌‌سازی فراکاوشی تکامل تفاضلی به عنوان یک روش نوین و توانمند که تاکنون بطور گسترده‌ای در کنترل سازه‌ها مورد استفاده قرار نگرفته، شاخص عملکرد سنتی را بهینه می‌نماید. عناصر ماتریس بهره‌ی کنترل توسط روش تکامل تفاضلی به نحوی در فضای مساله جستجو می‌شوند تا منجر به کمینه شدن شاخص عملکرد گردند. روند تکراری الگوریتم پیشنهادی و عدم نیاز به حل معادله‌ی دیفرانسیل ریکاتی، ملاحظه‌ی اثر تحریکات زلزله را در محاسبه‌ی نیروهای کنترلی ممکن می سازد. نتایج حاصل از روش مذکور در سازه‌های نمونه تحت تاثیر رکوردهای زلزله‌ی مختلف بیانگر کاهش پاسخ‌ها و نیروهای کنترلی مورد نیاز نسبت به تنظیم‌کننده‌ی خطی مرتبه‌ی دوم LQR است. همچنین، ماکزیمم نیروی کنترل و ماکزیمم پاسخ تغییرمکان و نه شاخص بنچ‌مارک که در سازه‌های کنترل‌شده سنجیده می‌شود نیز محاسبه و با روش LQR مقایسه شده‌اند. کاهش این شاخص‌ها در حالت اعمال روش پیشنهادی نسبت به روش LQR نیز بیانگر کارایی روش ارائه شده در کنترل بهینه‌ی ارتعاشات سازه‌ها می باشد.

کلیدواژه‌ها


عنوان مقاله English

Design of optimal controller for structures using differential evolution algorithm

نویسندگان English

Javad Katebi 1
Mona Shoaei-parchin 2
1 Assistant Prof., Structural Eng. Dept., Faculty of Civil Eng., TabrizUniversity
2 M.Sc. of Structural Engineering, Faculty of Civil Eng., TabrizUniversity
چکیده English

One of the most important goals of optimal control of structures is the achieving the desired reduction in responses using minimal control forces. In many research efforts that have been studied over the past few decades in the field of active control, several control algorithms have been proposed that most of them calculates the required control forces by optimizing a second-order performance index. There are simplifying assumptions in formulation of these classic algorithms and constraints in mathematical optimization techniques that have been used in optimizing the performance index, for example, because of unknown nature of earthquakes, the LQR classic controller don’t consider the external forces such as earthquake excitation in calculation of control signal. This may make difficult to finding the optimal solution in optimization process and obtained relatively optimal solutions for optimization problem. Metaheuristic optimization methods, such as differential evolution are modern algorithms and because of their special capabilities in finding global optima are powerful tools that can be used in solving of complex problems. But despite the many advantages, these methods has not been used extensively for solving civil engineering problems especially in field of active control of structures. In this paper we considered the active control of structures as an optimization problem and proposed a controller that used the differential evolution metaheuristic algorithm for finding gain matrix elements of active control problem. The gain matrix elements were globally searched by differential evolution algorithm to minimizing the LQR performance index. Because of the proposed method is repetitive and does not need to solve the Ricatti differential equation; it is possible to consider the effect of external excitation in finding the gain matrix and calculation of control signal. The controller was applied on sample 2DOF and 10DOF structures and responses of these structures under the excitation of several historical earthquake records were obtained by MATLAB programming. In addition to the performance index, the maximum control force and maximum control displacement, 9 benchmark indexes that measured in controlled structures are calculated in this study. These indexes represented the reduction of controlled maximum and average responses of structure in comparison with uncontrolled responses. In order to evaluate the effectiveness of the proposed controller, these 9 performance index for 2DOF and 10DOF examples against 7 historical earthquakes for proposed and LQR controller was calculated and compared. The simulation results indicate that the proposed method is effective in keeping the controlled responses of structures in desired range and reducing the vibrations of structures with lower need to control energy in comparison with LQR algorithm. Because of great capabilities of DE algorithm in searching large spaces and the iterative nature of controller unlike the LQR method, this controller consider the effects of external forces in control process. Numerical simulation showed that the performance of the presented control algorithm is better than the LQR controller approach in finding of optimal displacements and control forces. Therefore, metaheuristic algorithms such as differential evolution can be used in active control of structures to achieving more efficient results in comparison with classic controllers.

کلیدواژه‌ها English

active control
Metaheuristic
Differential evolution
Optimization
[1]           Yang, J.N., Akbarpour, A. & Ghaemmaghami, P. 1987 New optimal control algorithms for structural control. Journal of Engineering Mechanics, 113(9), 1369-1386.
[2]           Basu, B. & Nagarajaiah, S. 2008 A wavelet-based time-varying adaptive LQR algorithm for structural control. Engineering Structures, 30, 2470–2477.
[3]           Amini, F. & Tavassoli, M.R. 2005 Optimal structural active control force, number and placement of controllers. Engineering structures, 27(9), 1306-1316.
[4]           Athans, M. 1966 The status of optimal control theory and applications for deterministic systems. Automatic Control, IEEE Transactions on, 11(3), 580-596.
[5]           Kumar, M.S. & Vijayarangan, S. 2006 Design of LQR controller for active suspension system. Indian journal of engineering and materials sciences, 13(3), 173.
[6]           Mousanejad, T. & Pourzeynali, S. 2008 کنترل لرزه ای ساختمانهای بلند با استفاده از میراگرهای ویسکوز نیمه فعال (Seismic control of tall buildings using semi-active viscous dampers) in 4th National Civil Engineering Conference, Tehran, Iran, (In Persian).
[7]           Younespour, A. & Ghaffarzadeh, H. 2014 Structural active vibration control using active mass damper by block pulse functions. Journal of Vibration and Control, 1077546313519285.
[8]           Ghaboussi, J. & Joghataie, A. 1995 Active control of structures using neural networks. Journal of Engineering Mechanics, 121(4), 555-567.
[9]           Joghataie, A., Neural networks and fuzzy logic for structural control. 1994, University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign.
[10]         Bani-Hani, K. & Ghaboussi, J. 1998 Nonlinear structural control using neural networks. Journal of engineering mechanics, 124(3), 319-327.
[11]         Bhardwaj, M. & Datta, T. 2006 Semiactive fuzzy control of the seismic response of building frames. Journal of structural engineering, 132(5), 791-799.
[12]         Pourzeynali, S., Lavasani, H. & Modarayi, A. 2007 Active control of high rise building structures using fuzzy logic and genetic algorithms. Engineering Structures, 29(3), 346-357.
[13]         Ribakov, Y. & Dancygier, A. 2003 Optimal control of MDOF structures with controlled stiffness dampers. The Structural Design of Tall and Special Buildings, 12(5), 351-369.
 
[14]         Mohebbi, M. & Joghataie, A. 2012 Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms. The Structural Design of Tall and Special Buildings, 21(1), 57-76.
[15]         Amini, F., Hazaveh, K. & Rad, A.A. 2013 Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers. Computer-Aided Civil and Infrastructure Engineering, 28, 542–557.
[16]         Joghataie, A. & Mohebbi, M. 2012 Optimal control of nonlinear frames by Newmark and distributed genetic algorithms. The Structural Design of Tall and Special Buildings, 21(2), 77-95.
[17]         Wongprasert, N. & Symans, M. 2004 Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building. Journal of Engineering Mechanics, 130(4), 401-406.
[18]         Bagheri, A. & Amini, F. 2013 Control of structures under uniform hazard earthquake excitation via wavelet analysis and pattern search method. Structural Control and Health Monitoring, 20(5), 671-685.
[19]         Amini, F. & Bagheri, A. 2012 Optimal control of structures under earthquake excitation based on the colonial competitive algorithm. The Structural Design of Tall and Special Buildings.
[20]         Cha, Y.J. & Agrawal, A.K. 2013 Decentralized output feedback polynomial control of seismically excited structures using genetic algorithm. Structural Control and Health Monitoring, 20(3), 241-258.
[21]         Kundu, S. & Kawata, S. 1996 Genetic algorithms for optimal feedback control design. Engineering Applications of Artificial Intelligence, 9(4), 403-411.
[22]         Storn, R. & Price, K. 1997 Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
[23]         Ohtori, Y., Christenson, R., Spencer Jr, B. & Dyke, S. 2004 Benchmark control problems for seismically excited nonlinear buildings. Journal of Engineering Mechanics, 130(4), 366-385.