کاربرد رویه بتن آرمه در بهسازی لرزه ای سقف های شیبدار طاق ضربی ساختمان های بنایی

نویسندگان
1 دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران
2 دانشکده مهندسی عمران ، دانشگاه علم و صنعت ایران
چکیده
با توجه تعداد زیاد ساختمان های بنایی در کشور و نیز ضعف عملکرد این سازه‌ها در برابر نیروهای زلزله، مقاوم سازی آن ها حائز اهمیت فراوان می باشد. مشکل اصلی این نوع سازه ها، عملکرد نامطلوب و عدم صلبیت سقف طاق ضربی آن در اثر زلزله است. این نقطه ضعف، در سقف‌های طاق ضربی شیب‌دار رایج در شمال کشور خود را بیشتر نشان می‌دهد. لذا برای بررسی عملکرد سقف طاق ضربی و همچنین تاثیر شیب بر آن، در این مقاله تعداد 8 نمونه سازه بنایی یک طبقه با سقف طاق ضربی با شیب‌های صفر، 10، 15 و 20 درجه در حالت‌های بهسازی نشده و بهسازی شده با رویه بتن‌آرمه در نرم افزار اجزاء محدود ANSYS مدلسازی شده و تحت آنالیز استاتیکی غیرخطی مورد بررسی قرار گرفته است. نتایج نشان می دهد که بهسازی با رویه بتن‌آرمه باعث افزایش صلبیت سقف‌ها می گردد. افزایش شیب سقف سبب کاهش مقاومت و سختی الاستیک و نیز ضریب رفتار سازه می گردد که به کمک روش بهسازی با رویه بتن‌آرمه می‌توان این پارامترها را بهبود بخشید. همچنین نتایج تحلیل اقتصادی نیز نشان‌دهنده‌ی آن است که روش بهسازی با رویه بتن‌آرمه نسبت به شیوه‌های دیگر بهسازی با توجه به عملکرد مناسب‌تر، ازنظر اقتصادی مقرون‌به‌صرفه تر می‌باشد.

کلیدواژه‌ها


عنوان مقاله English

Application of Reinforcement Concrete Layer Method for Retrofit of Slant Jack Arch Roofs in Masonary Buidlings

چکیده English

Jack arch masonry slab, developed in the 19th century in Britain has been used widely to floor and roof industrial and residential masonry buildings in many parts of the world. It is still in use in parts of Europe, the Middle East and Indian subcontinent. Taking into consideration the widespread use of the jack arch flooring and its ease of constructing compared to the more modern concrete-based slabs, it is rather surprising that there is no mention of the system in codes of practical installation . Most of these roofs are built in traditional ways and little control is applied on their method of construction.
Collapse of a large number of these composite slabs during past earthquakes pointed out the weakness of this type of flooring to seismic loading. It has also highlighted the need for developing appropriate retrofitting schemes sience Statistics has showed that over half of the slabs used in buildings in Iran are jack arch roofs. The point is that these slabs (specially the slant type that is widely used in buildings of northern area in Iran) do not show appropriate seismic performance in severe earthquakes. Therefore rehabilitation of them needs to be considered. One of the effective methods is to add a thin layer of reinforced concrete over the slab. The retrofitting procedure includes; removing the slab flooring finish, then placing over the slab a mesh of reinforcement bars and finally covering the mesh with a thin layer of concrete. The effectiveness of such a method needs more investigations. To further investigate the seismic behavior of these roofs, response modification factor can be utilized as a well-known seismic parameter.
This study investigates the seismic performance of masonry buildings with slant jack arch slabs retrofitted by the method of adding a layer of reinforcement concrete. Two groups of one story masonry buildings with jack arch masonry slabs are designed including roofs with slopes of 0, 10, 15 and 20 degrees with and without concrete layer for roof retrofitting. Static nonlinear (pushover) analysis is carried out. Nonlinear analysis program “ANSYS” is employed for the analyses. The load–displacement curves for both types of models are obtained and variations of strength, ductility factor, stiffness and rigidity of roofs n both types of models are investigated. Response modification factor of two groups are calculated and results are compared. Results show that according to standard no. 2800 criterion, slant jack arch masonry slabs are classified as semi-rigid roofs and by retrofitting them, their rigidity can be enhanced. Increasing the Slope of roofs inversely affects the Response modification factor (R), strength and elastic stiffness of structure. Finally For the consideration of economics factors, a cost analysis based on the tariffs of the Iranian Management and Programming Organization is carried out on three conventional methods of roof retrofitting (method of adding a concrete layer on the roof, steel grid method and tie-bracing method recommended by standard no. 2800). The obtained results indicate that method of adding a concrete layer is the most cost-effective method for jack arch retrofitting.

کلیدواژه‌ها English

masonry buildings
jack arch roof
slant roof
Concrete Layer
Seismic evaluation
- مراجع                                        References
[1] Maheri M. R. 2004 Seismic design and implementation of Jack-arch roof. International Institute of Earthquake Engineering and Seismology, Tehran, Iran (in Persian).
[2] Maheri M. R. 2001 Principles of Jack-arch ceiling design against static and dynamic forces. National-Plan Report no. 497, National Scientific Research Council, Tehran, Iran (in Persian).
[3] Ambraseys N.N. 1963 The Buyin-Zara (Iran) earthquake of September, 1962 a field report. Bulletin of the Seismological Society of America, 53(4), 705-740.
[4] Razani R. & Lee K. L. 1973 The Engineering Aspects of the Qir, Iran Earthquake of April 10, 1972 in southern Iran, A Report to the National Science Foundation. National Academies.
[5] Adeli, H. 1982 The sirch (Kerman, Iran) earthquake of 28 July 1981—A field investigation. bulletin of the seismological society of America, 72(3), 841-861.
[6] Mohajer‐Ashjai A. & Nowroozi A. A. 1979 The Tabas Earthquake of September 161978 in east‐central IranA preliminary field report, Geophysical Research Letters, 6(9), 689-692.
[7] Standard No. 2800 2005 Third Edition, Iranian Code of Practice for Seismic Resistant Design of Buildings, Building and Housing Research Center, Iran (in Persian).
[8] Maheri M. R. 2004 Seismic evaluation and design of jack arch slabs. In 13th world conference on earthquake engineering, Vancouver, B.C., Canada.
[9] Maheri M. R. & Rahmani H. 2003 Static and seismic design of one-way and two-way jack arch masonry slabs. Engineering Structures, 25(13), 1639-1654.
[10] Mirjalili A., Shakib H. & Mazroei A. 2009 Studying the Standard 2800 criteria regarding the flexible Jack-arch diaphragms based on experimental models. In 4th conference on an overview of the Seismic resistant design regulation of buildings (Standard no. 2800), Tehran, Iran (in Persian).
[11] Salajegheh E., Seyfouri S. & Mohamadi A. 2010 Evaluation of different retrofitting methods for Jack-arch roofs in masonry buildings. In International conference on structural lightening and earthquakes, Tehran, Iran (in Persian).
[12] Maheri M. R., Pourfallah S., & Azarm R. 2012 Seismic retrofitting methods for the jack arch masonry slabs. Engineering Structures, 36, 49-60.
[13] ANSYS Manual. Canonsburg, PA 15317, USA: ANSYS INC.; 2007
[14] Dhanasekar M., Kleeman P. W., & Page A. W. 1985 Biaxial stress-strain relations for brick masonry. Journal of Structural Engineering, 111(5), 1085-1100.
[15] FEMA-356 2000 Prestandard and commentary for the seismic rehabilitation of buildings, Federal Emergency Management Agency.
[16] ACI Committee, American Concrete Institute & International Organization for Standardization 2008 Building code requirements for structural concrete (ACI 318-08) and commentary, American Concrete Institute.
[17] Maheri M. 2007 Retrofitting of Jack arch masonry floors. In International Symposium on Seismic Risk Reduction, Bucharest, Romania.
[18] Ghiassi B., Soltani M., & Tasnimi A. A. 2012 A simplified model for analysis of unreinforced masonry shear walls under combined axial, shear and flexural loading. Engineering Structures, 42, 396-409.
[19] Mehrabi A. B., Benson Shing P., Schuller M. P. & Noland J. L. 1996 Experimental evaluation of masonry-infilled RC frames. Journal of Structural engineering, 122(3), 228-237.
[20] Instruction for Seismic Rehabilitation of Existing Buildings no. 360 2014 First Revision, Department of Technical Affairs, Iran (in Persian).
[21] Uang C. M. 1991 Establishing R (or R w) and C d factors for building seismic provisions. Journal of Structural Engineering, 117(1), 19-28.
[22] Maheri M. R., & Akbari R. 2003 Seismic behaviour factor, R, for steel X-braced and knee-braced RC buildings. Engineering structures, 25(12), 1505-1513.
[23] Nassar A. A. & Krawinkler H. 1991 Seismic demands for SDOF and MDOF systems (No. 95). John A. Blume Earthquake Engineering Center, Department of Civil Engineering, Stanford University, USA.
[24] Maheri M. R. 2005 Performance of building roofs in the 2003 Bam, Iran, earthquake. Earthquake Spectra, 21(S1), 411-424.
[25] Manufacturer's suggested retail price (Building category) 2014, Department of Technical Affairs, Iran (in Persian)