ارتعاش آزاد محیط های تیرگونه در حالت سه بعدی متکی بر بستر ارتجاعی پاسترناک

نویسندگان
1 دانشگاه صنعتی نوشیروانی بابل
2 بابل- دانشگاه صنعتی نوشیروانی- دانشکده عمران
چکیده
در این نوشتار، حل دقیق ارتعاش آزاد تیر مستطیلی همگن و ایزوتروپ بر بستر ارتجاعی دو پارامتری در صفحه تحتانی ارائه شده است. مدل دو پارامتری پاسترناک به‌منظور مدلسازی اندرکنش تیر با بستر در سطح تماس انتخاب شده است. معادلات بر اساس تئوری دوبعدی ارتجاعی فرمولبندی شده و با استفاده از تابع پتانسیل تغییرمکان معادلات حاکم به یک معادله مرتبه چهار کاهش و توسط روش جداسازی متغییرها و اعمال دقیق شرایط مرزی حل شده است. روش ارائه شده در این پژوهش بدون فرضیات سادهکننده و برخلاف تئوریهای متداول تیر، محدودیتی در انتخاب ضخامت نداشته و برای نسبت‌های مختلف ضخامت به طول تیر دارای اعتبار است. بهمنظور اعتبارسنجی، نتایج بهدستآمده از این پژوهش با سایر کارهای تحلیلی مقایسه شده است. نتایج نشان میدهد که افزایش ضرایب بستر با افزایش بسامد طبیعی تیر همراه است که شدت آن با افزایش نسبت ضخامت به طول و در مقادیر بزرگتر از 0.2 و در مودهای بالای ارتعاشی دارای کاهش قابل ملاحظه ای است.

کلیدواژه‌ها


عنوان مقاله English

Free Vibration of Beam-Like Structures Resting on a Pasternak Elastic Foundation

چکیده English

The beam theory is used in the analysis and design of a wide range of structures, from buildings to bridges to the load-bearing bones of the human body. Beams resting on elastic foundation have wide application in many branches of engineering problems namely geotechnics, road, railroad and marine engineering and bio-mechanics. The foundation is very often a rather complex medium; e.g., a rubberlike fuel binder, snow, or granular soil. The key issue in the analysis is modelling the contact between the structural elements and the elastic bed. Since of interest here is the response of the foundation at the contact area and not the stresses or displacements inside the foundation material, In most cases the contact is presented by replacing the elastic foundation with simple models, usually spring elements. The most frequently used foundation model in the analysis of beam on elastic foundation problems is the Winkler foundation model. In the Winkler model, the elastic bed is modeled as uniformly distributed, mutually independent, and linear elastic vertical springs which produce distributed reactions in the direction of the deflection of the beam. However since the model does not take into account either continuity or cohesion of the bed, it may be considered as a rather crude representation of the elastic foundation. In order to find a physically close and mathematically simple foundation model, Pasternak proposed a so-called two-parameter foundation model with shear interactions. The first foundation parameter is the same as the Winkler foundation model and the second one is the stiffness of the shearing layer in the Pasternak foundation model.
Dynamic analysis is an important part of structural investigation and the results of free vibration analysis are useful in this context. Vibration problems of beams on elastic foundation occupy an important place in many fields of structural and foundation engineering.With the increase of thickness, existence of simplifying hypotheses in beam theories such as the ignorance of rotational inertial and transverse shear deformation in classic theory, application of determination coefficient in first-order shear theory and expression of one or few unknown functions based on other functions in higher-order shear theories is accompanied by reduction in accuracy of these theories. This represents the necessity of precise and analytical solutions for beam problems with the least number of simplifying hypotheses and for different thicknesses.
In the present study, the analytical solution for the problem of free vibration of homogeneous prismatic simply supported beam with rectangular solid sections and desired thickness resting on Pasternak elastic foundation is provided for completely isotropic behaviors under two-dimensional theory of elasticity and functions of displacement potentials. Characteristic equations of natural vibration are defined by solving one partial differential equations of fourth order through separation of variables and application of boundary conditions. The major characteristics of present study are lack of limitation of thickness and its validity for beams of low, medium and large thickness. To verify, the results of present study were compared with those of other studies. The results show that increases of foundation parameters is associated with an increased natural frequency, The intensity by increasing the ratio of thickness to length and in values larger than 0.2 and in the higher modes of vibration is reduced considerably.

کلیدواژه‌ها English

natural frequency
Free vibration
Deep Beam
elastic foundation
Potential Functions
[1] Gorbunov-pasadov M. I. 1949 Beams and plates on an elastic base. Stroizdat, Moscow, USSR.
[2] Kerr A. D. 1964 Elastic and viscoelastic foundation models. Journal of Applied Mechanics, 31(3), 491-498.
[3] Kerr A. D. 1984 On the formal development of elastic foundation models. Ingenieur-Archiv, Springer-Verlag, 54(6), 455-464.
[4] Winkler E. 1867 Die Lehre von Elastizitat und Festigkeit (The theory of elasticity and stiffness). H. Domenicus. Prague. (in German).
[5] Biot M. A. 1922 Bending of an infinite beam on an elastic foundation. Journal of Applied Mathematics and Mechanics, 2 (3), 165-184.
[6] Balkaya M., Kaya M. O. & Saglamer A. 2009 Analysis of the vibration of an eastic beam supported on elastic soil using the differential transform method. Archive of Applied Mechanics, 79(2), 135–146.
[7] Ozturk B. & Coskun S. B. 2011 The homotopy perturbation method for free vibration analysis of  beam on elastic foundation. Structural Engineering and Mechanics, 37(4), 415-425.
[8] Lee S. Y., Kuo Y. H. & Lin F. Y. 1992 Stability of a timoshenko beam resting on a winkler elastic foundation. Journal of Sound and Vibration, 153(2), 193-202.
[9] Thambiratnam D. & Zhuge Y. 1996 Free vibration analysis of beams on elastic foundation. Computers and Structures, 60(6), 971-980.
[10] Eisenberger M., Yankelevsky D. Z. & Adin M. A. 1985 Vibration of beams fully or partially supported on elastic foundations. Earthquake Engineering & Structural Dynamics, 13(5), 651-660.
[11] Eisenberger M., Yankelevsky D. Z. & Clastornik J. 1986 Stability of beams on elastic foundations. Computer and Structure, 24(1), 135-140.
[12] Eisenberger M. & Clastornik J. 1987 Vibration and buckling of a beam on variable winkler elastic foundations. Journal of Sound and Vibration, 115(2), 233-241.
Filonenko-Borodich, M.M. (1940) Some Approximate Theories of the Elastic Foundation. Uch. Zap. Mosk. Gos, Univ. Mekh. No. 46, 3-18
[13] Filonenko-Borodich M. M. 1940 Some approximate theories of the elastic foundation. Uchenyie Zapiski Moskovskogo Gosudarstvennogo Universiteta. Mekhanica, 46, 3-18.
[14] Hetenyi M. 1946 Beams on Elastic Foundation. , Ann Arbor, Michigan, The University of Michigan Press.
[15] Pasternak P. L. 1954 On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudarstvenrwe Izdatelslvo Literaturi po Stroitclstvu i Arkhitekture Moscow, USSR.
[16] Valsangkar A. J. & Pradhanag R. 1988 Vibrations of beam-column on two-parameter elastic foundations. Earthquake Engineering and Structural Dynamics, 16(2), 217-225.
[17] Valsangkar A. J. 1986 Vibrations of beam on two-parameter elastic foundations. Proceedings of the Eleventh Canadian Congress of Applied Mechanics. University of Alberta.
[18] De Rosa M. A. & Maurizi M. J. 1998 The influence of concentrated masses and pasternak soil on the free vibrations of euler beams-exact solution. Journal of Sound and Vibration,, 212(4), 573-581.
[19] Saito, H. & Terasawa. T. 1980 Steady-state vibrations of a beam on a pasternak foundation for moving loads. Journal of Applied Mechanics,, 47(4), 879-883.
[20] Jafari-Talookolaei R. A. & Ahmadian M. T. 2007 Free vibration analysis of a cross-ply laminated composite beam on pasternak foundation”, Journal of Computer Science, 3(1), 51-56.
[21] Alshorbagy A. E., Eltaher M. A. & Mahmoud F. F. 2011 Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35(1), 215-225.
[22] Civalek O. O. B. 2010 Free vibration analysis of tapered beam-column with pinned ends embedded in winkler-pasternak elastic foundation. Geomechanics and Engineering,, 2(1), 45-56.
[23] Cetin D. & Simsek M. 2011 Free vibration of an axially functionally graded pile with pinned ends embedded in winkler-pasternak elastic medium. Structural Engineering and Mechanics, 40(4), 583-594.
[24] Matsunaga H. 1999 Vibration and buckling of deep beam-columns on two-parameter elastic foundations. Journal of Sound and Vibration, 228(2), 359-376.
[25] Davies R. M. 1948 A critical study of the hopkinson pressure bar. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 240(821), 375-457.
[26] Wang T. M. & Stephens J. 1977 Natural frequencies of timoshenko beams on pasternak foundation. Journal of Sound and Vibration, 51(2), 149-155.
[27] Wang C. M., Lam k. y. & He X. Q. 1998 Exact solutions for timoshenko beams on elastic foundations using green's functions. Journal of Structural Mechanics, 26, 101-113.
[28] Heyliger P. R. & Reddy J.N. 1988 A higher order beam finite element for bending and vibration problems. Journal Sound and vibration, 126(2), 309–326.
[29] Matsunaga H. 1996 Free vibration and stabilities of thick elastic beams subjected to axial stresses. Journal Sound and vibration. 191(5), 917-993.
[30] Matsunaga H. 1996 Buckling instabilities of thick elastic beams subjected to axial stresses. Computer and Structure, 59(5), 859-868.
[31] Naidu N. R. & Rao G. V. 1995 Vibrations of initially stressed uniform beams on a two-parameter elastic foundation, Computer and Structure, 57(5), 941-943.
[32] Franciosi C. & Masi A. 1993 Free vibrations of  foundation beams on two-parameter elastic soil. Computer and Structure. 47(3), 419-426.
[33] Malekzadeh P. & Karami G. 2008 A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. Applied Mathematical Modelling, 32(7), 1381-1394.
[34] Dobromir D. 2012 Analytical solution of beam on elastic foundation by singularity functions. Engineering Mechanics, 19(6), 381-392.
[35] Ho S. H. & Chen C. K. 1998 Analysis of general elastically and restrained non-uniform beams using differential transform. Applied Mathematic Model, 22(4), 219-234.
[36] Chen W. Q., Lu C. F. & Bian Z.G. 2004 A mixed method for bending and free vibration of beams resting on a pasternak elastic foundation. Applied Mathematic Model, 28(10), 877-890.
[37] Tran-Cong T. 1994 On the completeness and uniqueness of the papkovich-neuber and the non-axisymmetric boussinesq and love and burgatti solutions in general cylindrical coordinates. Journal of elasticity, 36(3),  227-255.
[38] Herrmann L. R. 1964 Three-dimensional elasticity solution for continous beams. Journal of  Frankin Institute, 278(2), 75-83.
[39] Sundara Raja Ingar K. T. & Prabhakara M. K. 1968 Analysis of continuous beams- a three dimensional elasticity solution”, Int. J. Engng Sci, 6(4), 193-208.
[40] Ahmed  S. R., Khan  M. R., Islam  K. M. S. & Uddin  M. d. W. 1998 Investigation of  stresses at the fixed end of  deep cantilever beams.  Journal of Computer and Structure, 69(3), 329-338.
[41] Cheng  S. 1979 Elasticity theory of plates and a refined theory. ASME J. Appl. Mech, 46(3), 644-650.
[42] Gregory R. D. 1992 The general form of the three-dimensional elastic field inside an isotropic plate with free faces. Journal Elast, 28(1), 1-28.
[43] Gao  Y. & Wang  M. Z. 2007 The equivalence of  The refined theory and the decomposition theorem of rectangular  beams.  Journal of Applied  Mathematic, 31(3), 551-563.
 
[44] Gao Y. & Shang L. 2010 The exact  theory of deep beam without ad hoc assumption. Journal of Mechanics Research Communications, 37(6), 559-564.
[45] Eskandari-Ghadi M. 2005 A complete solution of the wave equations for transversely isotropic media. Journal of Elasticity, 81(1), 1-19.
 [46] Rahimian, M., Eskandari-Ghadi, M., Pak, R. Y., & Khojasteh, A. 2007 Elastodynamic potential method for transversely isotropic solid. Journal of Engineering Mechanics, 133(10), 1134-1145.
[47] Nematzadeh M., Eskandari-Ghadi M. & Navayi Neya B. 2011 An analytical solution for transversely isotropic simply supported thick rectangular plates using displacement potential function. J. Strain Analysis for Engineering Design, 46(2), 121-142.
[48] Navayi Neya B. 2014 Exact solution of free vibration for rectangular isotropic thick plates by use displacement potential functions. Journal of Civil Engineering Sharif, 30(2), 33-41.