[1] Gorbunov-pasadov M. I. 1949 Beams and plates on an elastic base. Stroizdat, Moscow, USSR.
[2] Kerr A. D. 1964 Elastic and viscoelastic foundation models. Journal of Applied Mechanics, 31(3), 491-498.
[3] Kerr A. D. 1984 On the formal development of elastic foundation models. Ingenieur-Archiv, Springer-Verlag, 54(6), 455-464.
[4] Winkler E. 1867 Die Lehre von Elastizitat und Festigkeit (The theory of elasticity and stiffness). H. Domenicus. Prague. (in German).
[5] Biot M. A. 1922 Bending of an infinite beam on an elastic foundation. Journal of Applied Mathematics and Mechanics, 2 (3), 165-184.
[6] Balkaya M., Kaya M. O. & Saglamer A. 2009 Analysis of the vibration of an eastic beam supported on elastic soil using the differential transform method. Archive of Applied Mechanics, 79(2), 135–146.
[7] Ozturk B. & Coskun S. B. 2011 The homotopy perturbation method for free vibration analysis of beam on elastic foundation. Structural Engineering and Mechanics, 37(4), 415-425.
[8] Lee S. Y., Kuo Y. H. & Lin F. Y. 1992 Stability of a timoshenko beam resting on a winkler elastic foundation. Journal of Sound and Vibration, 153(2), 193-202.
[9] Thambiratnam D. & Zhuge Y. 1996 Free vibration analysis of beams on elastic foundation. Computers and Structures, 60(6), 971-980.
[10] Eisenberger M., Yankelevsky D. Z. & Adin M. A. 1985 Vibration of beams fully or partially supported on elastic foundations. Earthquake Engineering & Structural Dynamics, 13(5), 651-660.
[11] Eisenberger M., Yankelevsky D. Z. & Clastornik J. 1986 Stability of beams on elastic foundations. Computer and Structure, 24(1), 135-140.
[12] Eisenberger M. & Clastornik J. 1987 Vibration and buckling of a beam on variable winkler elastic foundations. Journal of Sound and Vibration, 115(2), 233-241.
Filonenko-Borodich, M.M. (1940) Some Approximate Theories of the Elastic Foundation. Uch. Zap. Mosk. Gos, Univ. Mekh. No. 46, 3-18
[13] Filonenko-Borodich M. M. 1940 Some approximate theories of the elastic foundation. Uchenyie Zapiski Moskovskogo Gosudarstvennogo Universiteta. Mekhanica, 46, 3-18.
[14] Hetenyi M. 1946 Beams on Elastic Foundation. , Ann Arbor, Michigan, The University of Michigan Press.
[15] Pasternak P. L. 1954 On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudarstvenrwe Izdatelslvo Literaturi po Stroitclstvu i Arkhitekture Moscow, USSR.
[16] Valsangkar A. J. & Pradhanag R. 1988 Vibrations of beam-column on two-parameter elastic foundations. Earthquake Engineering and Structural Dynamics, 16(2), 217-225.
[17] Valsangkar A. J. 1986 Vibrations of beam on two-parameter elastic foundations. Proceedings of the Eleventh Canadian Congress of Applied Mechanics. University of Alberta.
[18] De Rosa M. A. & Maurizi M. J. 1998 The influence of concentrated masses and pasternak soil on the free vibrations of euler beams-exact solution. Journal of Sound and Vibration,, 212(4), 573-581.
[19] Saito, H. & Terasawa. T. 1980 Steady-state vibrations of a beam on a pasternak foundation for moving loads. Journal of Applied Mechanics,, 47(4), 879-883.
[20] Jafari-Talookolaei R. A. & Ahmadian M. T. 2007 Free vibration analysis of a cross-ply laminated composite beam on pasternak foundation”, Journal of Computer Science, 3(1), 51-56.
[21] Alshorbagy A. E., Eltaher M. A. & Mahmoud F. F. 2011 Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35(1), 215-225.
[22] Civalek O. O. B. 2010 Free vibration analysis of tapered beam-column with pinned ends embedded in winkler-pasternak elastic foundation. Geomechanics and Engineering,, 2(1), 45-56.
[23] Cetin D. & Simsek M. 2011 Free vibration of an axially functionally graded pile with pinned ends embedded in winkler-pasternak elastic medium. Structural Engineering and Mechanics, 40(4), 583-594.
[24] Matsunaga H. 1999 Vibration and buckling of deep beam-columns on two-parameter elastic foundations. Journal of Sound and Vibration, 228(2), 359-376.
[25] Davies R. M. 1948 A critical study of the hopkinson pressure bar. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 240(821), 375-457.
[26] Wang T. M. & Stephens J. 1977 Natural frequencies of timoshenko beams on pasternak foundation. Journal of Sound and Vibration, 51(2), 149-155.
[27] Wang C. M., Lam k. y. & He X. Q. 1998 Exact solutions for timoshenko beams on elastic foundations using green's functions. Journal of Structural Mechanics, 26, 101-113.
[28] Heyliger P. R. & Reddy J.N. 1988 A higher order beam finite element for bending and vibration problems. Journal Sound and vibration, 126(2), 309–326.
[29] Matsunaga H. 1996 Free vibration and stabilities of thick elastic beams subjected to axial stresses. Journal Sound and vibration. 191(5), 917-993.
[30] Matsunaga H. 1996 Buckling instabilities of thick elastic beams subjected to axial stresses. Computer and Structure, 59(5), 859-868.
[31] Naidu N. R. & Rao G. V. 1995 Vibrations of initially stressed uniform beams on a two-parameter elastic foundation, Computer and Structure, 57(5), 941-943.
[32] Franciosi C. & Masi A. 1993 Free vibrations of foundation beams on two-parameter elastic soil. Computer and Structure. 47(3), 419-426.
[33] Malekzadeh P. & Karami G. 2008 A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. Applied Mathematical Modelling, 32(7), 1381-1394.
[34] Dobromir D. 2012 Analytical solution of beam on elastic foundation by singularity functions. Engineering Mechanics, 19(6), 381-392.
[35] Ho S. H. & Chen C. K. 1998 Analysis of general elastically and restrained non-uniform beams using differential transform. Applied Mathematic Model, 22(4), 219-234.
[36] Chen W. Q., Lu C. F. & Bian Z.G. 2004 A mixed method for bending and free vibration of beams resting on a pasternak elastic foundation. Applied Mathematic Model, 28(10), 877-890.
[37] Tran-Cong T. 1994 On the completeness and uniqueness of the papkovich-neuber and the non-axisymmetric boussinesq and love and burgatti solutions in general cylindrical coordinates. Journal of elasticity, 36(3), 227-255.
[38] Herrmann L. R. 1964 Three-dimensional elasticity solution for continous beams. Journal of Frankin Institute, 278(2), 75-83.
[39] Sundara Raja Ingar K. T. & Prabhakara M. K. 1968 Analysis of continuous beams- a three dimensional elasticity solution”, Int. J. Engng Sci, 6(4), 193-208.
[40] Ahmed S. R., Khan M. R., Islam K. M. S. & Uddin M. d. W. 1998 Investigation of stresses at the fixed end of deep cantilever beams. Journal of Computer and Structure, 69(3), 329-338.
[41] Cheng S. 1979 Elasticity theory of plates and a refined theory. ASME J. Appl. Mech, 46(3), 644-650.
[42] Gregory R. D. 1992 The general form of the three-dimensional elastic field inside an isotropic plate with free faces. Journal Elast, 28(1), 1-28.
[43] Gao Y. & Wang M. Z. 2007 The equivalence of The refined theory and the decomposition theorem of rectangular beams. Journal of Applied Mathematic, 31(3), 551-563.
[44] Gao Y. & Shang L. 2010 The exact theory of deep beam without ad hoc assumption. Journal of Mechanics Research Communications, 37(6), 559-564.
[45] Eskandari-Ghadi M. 2005 A complete solution of the wave equations for transversely isotropic media. Journal of Elasticity, 81(1), 1-19.
[46] Rahimian, M., Eskandari-Ghadi, M., Pak, R. Y., & Khojasteh, A. 2007 Elastodynamic potential method for transversely isotropic solid. Journal of Engineering Mechanics, 133(10), 1134-1145.
[47] Nematzadeh M., Eskandari-Ghadi M. & Navayi Neya B. 2011 An analytical solution for transversely isotropic simply supported thick rectangular plates using displacement potential function. J. Strain Analysis for Engineering Design, 46(2), 121-142.
[48] Navayi Neya B. 2014 Exact solution of free vibration for rectangular isotropic thick plates by use displacement potential functions. Journal of Civil Engineering Sharif, 30(2), 33-41.