ارزیابی شاخص خسارت پارک- انگ در سطوح عملکرد لرزه‌ای قابهای خمشی بتن مسلح

نویسندگان
1 مدرس
2 دانشگاه تربیت مدرس
چکیده
چکیده- یکی از مناسب‌ترین روش‌های ارزیابی عملکرد لرزه‌ای، بررسی خسارت‌های ایجاد شده در اجزای سازه است. شاخص‌های خسارت معیارهایی هستند که سعی می‌کنند با رصد چند متغیر خسارت، آسیب های ایجاد شده در اعضا و کل سازه را کمی کنند. یکی از مهمترین شاخص‌های خسارت موجود شاخص خسارت پارک- انگ است که خسارت اعضا را به صورت ترکیب خطی خسارت‌های ناشی از بیشینه تغییرشکل‌ها و رفتار چرخه‌ای بیان می‌کند.
در این مقاله شاخص خسارت پارک-انگ در سطوح عملکرد لرزه‌ای سازه‌های بتن مسلح مورد بررسی قرار گرفته است. برای این منظور سه قاب خمشی بتن مسلح با تعداد طبقات مختلف در نظر گرفته شده و بر اساس آیین‌نامه‌های عملکردی و با تحلیل دینامیکی غیرخطی تاریخچه زمانی در سطوح عملکرد طراحی شده‌اند. قابها تحت هفت شتابنگاشت، تحلیل دینامیکی غیرخطی شده و در نهایت بر اساس نتایج حاصل، تحلیل خسارت روی آنها صورت گرفته است.
بر اساس نتایج حاصل نحوه ارتباط میان شاخص خسارت پارک- انگ و معیار طراحی در آیین‌نامه‌های عملکردی و همچنین ارتباط میان شاخص خسارت‌ها مورد ارزیابی قرار گرفته است. در این مطالعه حدود شاخص خسارت پارک- انگ در سطوح عملکرد تعیین شده و مشاهده شد که این شاخص‌های خسارت در سطح عملکرد آستانه فروریزش نیاز به بررسی بیشتر دارد. این شاخص خسارت حساسیت کمی نسبت به خسارت‌های ستون داشته و نمی‌تواند خسارت‌های ناشی تمرکز خسارت در یک طبقه را به طور مناسب تبیین کند.

کلیدواژه‌ها


عنوان مقاله English

Assessment of the Park- Ang Damage Index for Performance Levels of RC Moment Resisting Frames

نویسندگان English

Abbas Tasnimi 1
Abbas Tasnimi 1
1 1
چکیده English

The main goal of seismic design is having safety while earthquake happens and making a structure repairable. For estimating the damages in the elements criterions are defined as damage indices.
Damage indices are functions consist of some damage variables and show the effect of those variables on the element’s damage. One of the most important damage indices is the Park-Ang damage index. It shows the damage of reinforced concrete elements as a linear combination of maximum deformations and absorbed cyclic energy. The analytical value of this damage index for the state of not having any damage will zero and for the collapse of the element should be equal one. The Park-Ang damage index has a non-negative factor shows the reduction of element’s resistance in cyclic loading and specifies the energy dissipation and the strength damage of the elements. This factor has been used for calibrating damage index and it has been found that the damage index is merged to one in the failure point. Applying this model in structural systems requires determination of an overall member’s deformation. Since inelastic behavior is limited to plastic zones adjacent to the ends of a member it is difficult to correlate, the relationship between overall member deformation, local plastic rotations and the damage index. So a modified version of this model developed by Kunnath and et al.
The most important difference between Kunnath model and Park-Ang model is representing this equation based on the moment-curvature diagram and replacing the non-dimensional factor with the strength deterioration factor in a hysteretic model. Supposing this factor as a constant will increase the diversion of the damage index in collapse prevention performance level.
In this paper, the Park-Ang damage index and its correctional relations for the various performance levels which contain immediate occupancy, life safety and the collapse prevention level has been evaluated and the values of damage index at these levels has been specified. For this purpose, three reinforced concrete frames with various numbers of stories have been designed for three levels of performances have been used for this purpose. Nonlinear dynamic analysis has been done with seven earthquake acceleration records and finally the damage analysis has been done for them. The damage index has been derived for all of these nine frames and the values of damage indices have been evaluated.
The beam damage indices are related directly to the rotation which happens in the plastic hinges. In components with immediate occupancy level, this linear characteistic is more clear but with increasing the rotation in the componenets or in the collapse prevention level, damage indices will more diverge. In this paper, it has been shown that this damage index needs to be investigated furtherer at the collapse prevention level and the second part of the damage index (strength damage) shall be determined by the element’s type and level of performance. The sensitivity of damage index is little to the column damages and the damage caused by the weak story is low and needs to be evaluated.

کلیدواژه‌ها English

Damage index
Performance levels
RC Moment Resisting Frames
Seismic Performance
[1] Cruz, Miguel .f; Lopez, Oscar A.; "Design of reinforced concrete frames with damage control"; Engineering Structures, Elsevier, No. 26, 2004, pp. 2037–2045.
[2] Habibi, A.R.; Izadpanah, M.;" New method for the design of reinforced concrete moment resisting frames with damage control"; Sharif University of Technology, ScientiaIranica, Vol. 19, No. 2, 2012, pp. 234–241.
[3] Alhaddad, M. S.; Wazira, K. M.; Al-Salloum, Y. A.; Abbas, Husain; "Ductility damage indices based on seismic performance of RC frames"; Soil Dynamics and Earthquake Engineering, Elsevier, Vol. 77, 2015, pp. 226–237.
[4] FEMA-P695, “Quantification of building seismic performance factors”, Washing- ton, DC: Federal Emergency Management Agency; 2009.
[5] Priestley MJN, Calvi GM, Kowalsky MJ., “Displacement based seismic design of structures”, Pavia: IUSS PRESS; 2007.
[6] Sharifi, A.; Banan, M. R.; Banan, M. R.; "A strain-consistent approach for determination of bounds of ductility damage index for different performance levels for seismic design of RC frame members"; Engineering Structures, Elsevier, Vol. 37, 2012, pp. 143–151.
[7] AASHTO, “AASHTO guide specifications for LRFD seismic bridge design”, Washington, DC, Association of State Highway and Transportation Officials; 2010.
[8] Banan MR. Beyond R-factor; “Design theory for damage-based seismic design of RC buildings”, Proceedings of a Turkey–Iran–US seismic workshop; 2010.
[9] Heo, Y; Kunnath, S. K.; "Damage-Based Seismic Performance Evaluation of Reinforced Concrete Frames"; International Journal of Concrete Structures and Materials, Vol.7, No.3, 2013, pp.175–182.
[10] Gunturi, S.; Shah, H.; "Building specific damage estimation"; Proceedings of 10th world conference on earthquake engineering, Madrid, Rotterdam, Balkema, 1992, pp. 6001–6.
[11] Arjomandi, k.; Estekanchi, H.;Vafai, A.; "Correlation between structural performance levels and damage indexes in steel frames subjected to earthquakes"; Sharif University of Technology, Scientia Iranica, Vol. 16, No. 2, 2009, pp. 147–155.
[12] Jiang, H. J.; Chen, L. Z.; Chen, Q.; "Seismic damage assessment and performance levels of reinforced concrete members"; The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction, Vol. 14, 2011, pp. 939-945.
[13] Jiang, H. J.; Bo Fu, Xilin Lu.; Chen, L.; "Seismic damage assessment of RC members by a modified Park-Ang model"; Advances in Structural Engineering, Vol. 18, No. 3, 2015, pp. 353-364.
[14] ASCE/SEI 41-06,"Seismic rehabilitation of existing buildings", American Society of Civil Engineering, Virginia, 2006.
[15] Park, YJ; Ang, AH-S;  "Mechanistic seismic damage model for reinforced concrete"; Journal of Structural Engineering, ASCE, Vol. 111, No. 4,1985, pp. 722–739.
[16] Ang, A. H.; "Seismic damage assessment and basis for damagelimiting Design"; Probabilistic Engineering Mechanics, Vol. 3, No. 1, 1988, pp. 146-150.
[17] Abbasnya, R.; Barghi, M.; 2004, “Criticism on the Park-Ang damage index for RC structures”,  1st National Congress on Civil Engineering, 83-1140, 2004, pp. 1-8, (In Persiann).
[18] Kunnath, S.K.; Reinhorn, A.M.; R.F. Lobo, A; "IDARC version 3.0: a program for the inelastic damage analysis of reinforced concrete structures"; National Center for Earthquake Engineering Research, Technical Report NCEER-92-0022, State University of New York at Buffalo, 1992.
[19] IDARC 2D Version 7.0,User’s guide of a program for the inelastic damage analysis of reinforced concrete structures, 2010.
[20] Bureau of Codification and Dissemination of National Building Regulations, Ministry of Road and Urban Development, Part-6 (INBC-P6), “Design Load for Buildings”, CH-6, 2013, (In Persian).
[21] Taghdir, A., “Soil type Classification of ground motion recording station of earthqhake based on spectrum shape”, MSc Dissertation, Iran University of Science and Technology. (In Persian).
[22] PEER structural performance database, Available from: http://nisee.berkeley.edu/spd/, 2014.
[23] Road, Housing and Urban Development Research center (BHRC), “Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard 2800)”, 2014, 4th Edition, PN S-253. (In Persiann).
[24] Federal Emergency Management Agency, FEMA-440, "Improvment of Nonlinear Static Seismic Analysis Procedures", Federal Emergency Management Agency, Washington, DC 2005.