تاثیر خاکستر لجن فاضلاب شهری به عنوان جایگزین سیمان بر خواص فیزیکی، مکانیکی و پایایی بتن

نویسندگان
1 دانشجوی کارشناسی ارشد
2 ریاست دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد
3 استادیار گروه مهندسی عمران دانشگاه فردوسی مشهد
چکیده
در فرآیند تصفیه فاضلاب شهری مقدار قابل توجهی لجن تولید می‌شود. یکی از روش‌های مدیریت این نوع پسماند، سوزاندن آن به منظور بازیابی انرژی است. مشکل اصلی این روش چگونگی دفع یا استفاده مجدد از خاکستر باقی مانده پس از احتراق می‌باشد. موضوع تحقیق حاضر، علاوه بر شناسایی ویژگی‌های فیزیکی و شیمیایی خاکستر لجن، بررسی اثر جایگزنی خاکستر لجن به جای سیمان بر ویژگی‌های فیزیکی، مکانیکی و پایایی بتن می‌باشد. در این ارتباط به بررسی نقش سطوح مختلف جایگزینی(5، 10، 15 و 20 درصد وزنی)، سن عمل‌آوری(7, 28, 91 و 180 روز) و نسبت آب به مواد سیمانی(35/0, 45/0 و 55/0) پرداخته شد. نتایج به دست آمده نشان می‌دهد که اثر جایگزینی خاکستر لجن به جای سیمان بر مقاومت فشاری، در سنین عمل‌آوری کوتاه مدت(7 و 28 روز) و بلند مدت(91 و 180 روز) کاملا متفاوت است. مقاومت فشاری 28 روزه برای نسبت آب به مواد سیمانی 35/0، 45/0 و 55/0 به ترتیب در محدوده 20-4، 15-3 و 10-2 درصد کمتر از نمونه شاهد است. کران پایین دامنه‌های مذکور به جایگزینی 5، و کران بالا به جایگزینی 20 درصدی خاکستر لجن به جای سیمان مربوط است. با این حال در دراز مدت(سن 180 روز)، بیشترین مقاومت فشاری در نسبت جایگزینی 15 درصد مشاهده گردید. با افزایش نسبت جایگزینی خاکستر لجن به جای سیمان، میزان تخلخل افزایش و مقاومت ویژه الکتریکی بتن کاهش یافت. به طور کلی نتایج این تحقیق نشان می‌دهد که رفتار خاکستر لجن به عنوان جایگزین سیمان در محدوده بین مواد پوزولانی و پرکننده طبقه‌بندی می‌شود.

کلیدواژه‌ها


عنوان مقاله English

The effect of municipal sewage sludge ash as replacement of cement on physical, mechanical and durability properties of concrete

نویسندگان English

Mohamad Amin Arshad Torabi 1
Shahnaz Danesh 2
Mohamadreza Tavakkolizadeh 3
چکیده English

Drict discharge of domestic wastewater(sewage) to the environment or into absorbing wells has caused many problems including surface and groundwater pollution. To reduce such problems, the number of wastewater treatment plants has increased significantly in Iran during the last two decades. During wastewater treatment, a significant amount of sludge, composed of organic and mineral material, is produced. This sludge, if not handled and disposed properly, can create serious environmental and health issues. One environmentally attractive way of dealing with such wastes is to use them in different types of applications. In this regard, many economical and beneficial methods have been developed to reuse sludge. Incineration of sludge for energy recovery or the use of sludge ash in cement-based construction materials are among these methods. Sludge incineration produces considerable amount of ash which should be disposed. However the ash can be used as cement substitude in procuction of cement-based material. The subject of using sludge ash as cement substitude has been investigated by a few researcher with the conclusion that the usage of ash can affect the final cement-based product quality. Based on their experimental results, the use of sludge ash tends to decrease the compressive strength of mortar or concrete. However, it should be mentioned that no research has yet been done to investigatethe the effects of sludge ash replacement on mechanical and durability properties of concrete. The main aim of this study was to investigate the effects of sludge ash usage as cement substitude on physical, mechanical and durability properties of concrete. For this purpose, the effects of three key parameters: replacement level ( 0-20%, by weight), curing times (7, 28, 91 and 180 days) and water-cementitious material ratio (0.35, 0.45 and 0.55) were investigated. The sludge used in this research was obtained from one of the local wastewater treatment plants, which subsequently was dried and then was incinerated at 800oC to produce ash, The ash was in general, made up of irregular grains which were aggregates of smaller particles. Also, the ash was composed mainly of calcium, silica and aluminium oxides. The results showed that increasing the amount of sludge ash induced higher mortar setting times as compared to the control samples, using Vicat test. The effect of ash content on mechanical properties of concrete samples was carried out by compressive strength tests. Results indicated that for 7 and 28 days curing time, concrete samples containing a mixture of sludge ash and cement yielded lower compressive strength values than those samples using only cement (without any ash content). However, for curing times greater than 28 days, the increase in ash content of concrete samples (0-15% by weight) led to an increase in compressive strength. Water absorption and electrical resistivity tests were conducted to determine the durability of concrete containing sewage sludge ash. As blending percentages of ash content increased fom 5% to 20%, electrical resistivity of concrete samples decreased for regardless of the applied curing times. This phenomenon might be the result of increased porosity and material ionization.

کلیدواژه‌ها English

Municipal sewage sludge ash
concrete
compressive strength
durability
Water Absorption
[1]Davis, R., The impact of EU and UK environmental pressures on the future of sludge treatment and disposal, Water and Environment Journal, Vol.10, 1996,  65-69.
[2] Lundin, M., Olofsson, M., Pettersson, G., &Zetterlund, H., Environmental and economic assessment of sewage sludge handling options, Resources, Conservation and Recycling, Vol. 41, 2004, 255-278.
 [5] Fotovat, A., Moghadam, M. R. A., Maknoon, R., &Sebt, M. H., Laboratory study onapplication of municipal sludge ash in construction materials. Paper presented at the Proceedings of IWA special conference on Facing Sludge Diversities, Challenges, Risks and Opportunities, 2007.
[6] Cyr, M., Coutand, M., &Clastres, P.,Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials, Cement and Concrete Research, Vol. 37, 2007, 278-289.
[7] Pan, S. C., Tseng, D. H., C.CLee, & Lee, C., Influence of the fineness of sewage sludge ash on the mortar properties, Cement and Concrete Research, Vol. 33, 2003, 1749-1754.
[8] Tay, J.-H.,Sludge ash as filler for Portland cement concrete, Journal of Environmental Engineering, Vol. 113, 1987, 345-351.
[9] Chen, M., Blanc, D., Gautier, M.,Mehu, J., &Gourdon, R.,Environmentaland technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction, Waste management, Vol. 33, 2013, 1268-1275.
[10] Pinarli, V. and R. Dhir, Sustainable Waste Management-Studies on the use of sewage sludge ash in the construction industry as concrete material. Proceedings Sustainable Construction. Use of incinerator ash, London, 2000: p. 415-425.
[11] Coutand, M., Cyr, M., &Clastres, P.,Use of sewage sludge ash as mineral admixturein mortars,  Proceedings of the ICE-Construction Materials, Vol. 159, 2006, 153-162.
 [12] Monzo, J., Paya, J., Borrachero, M., &Peris-Mora, E., Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content, Cement and Concrete Research, Vol. 29(1), 1999, 87-94.
[13] Lin, K., Chang, W., Lin, D., Luo, H., & Tsai, M., Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar, Journal of Environmental Management, Vol.88, 2008,708-714.
[14] Garcés, P., Pérez Carrión, M., García-Alcocel, E., Payá, J., Monzó, J., & Borrachero, M., Mechanical and physical properties of cement blended with sewage sludge ash, Waste management, Vol.28, 2008, 2495-2502.
[15] Pérez-Carrión, M., Baeza-Brotons, F., Payá, J., Saval, J., Zornoza, E., Borrachero, M., Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks, Materiales de Construcción, Vol.64, 2014, 825-832.
[16] ASTM C192,Standard Practice for Making and Curing Concrete Specimens in the Laboratory, 2002.
[17] ASTM C188,Standard Test Method for Density of Hydrualic Cement, 2003.
[18] ASTM C204,Standard Test Method for Fineness of Hydraulic Cement by Air-Permeability Apparatus, 2000.
[19] ASTM C114,Standard Test Methods for Chemical Analysis of Hydraulic Cement, 2004.
[20] ASTM C191,Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle, 2004.
[21] BS 1881-116, Testing Concrete. Mthode for determination of compressive strength of concrete cubes, 1983.
[22] ASTM C642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, 2013.
[23] ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, 2012.
 [24] Waddell, J. J., Concrete construction handbook: McGraw-Hill Companies, 1974.
[25] Ahmaruzzaman, M. , A review on the utilization of fly ash. Progress in energy and combustion science, Vol.36, 2010, 327-363.
 [26] ASTM C311, Standard Test Methodsfor Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, 2002.