بررسی عملکرد خستگی کم چرخه در قاب های مهاربندی شده کمانش ناپذیر قطری، V شکل و شورن

نویسندگان
1 هئیت علمی دانشکده عمران و مدیر پژوهشکده فن آوریهای دانشگاه سمنان
2 دانشجوی دکتری مهندسی زلزله دانشگاه سمنان
چکیده
تحت بارگذاری تناوبی ممکن است اعضای سازه ای در اثر گسیختگی خستگی دچار شکست شوند. بنابراین رفتار فلزات تحت بارگذاری تناوبی یک معیار مهم طراحی محسوب می شود. خستگی کم چرخه (کرنش بالا)، به عنوان گسیختگی خستگی در تنش های بالا و تعداد چرخه های کم در نظر گرفته می شود. در این مقاله عملکرد خستگی کم چرخه از نظر رفتار هیسترتیک و نیز خرابی تجمعی در قاب های مهاربندی شده کمانش ناپذیر قطری، V شکل و شورن (V معکوس) تحت بارگذاری چرخه ای مورد ارزیابی قرار گرفته است. مهاربندهای کمانش ناپذیر در قاب ها در نقش میراگرهای هیسترتیک، در حین زلزله کرنش های پلاستیک بزرگی را متحمل می شوند. بنابراین لازم است تا این میراگرهای هیسترتیک از نظر خصوصیات خستگی کم چرخه و ظرفیت تغییرشکل پلاستیک مورد ارزیابی قرار گیرند. نتایج، رفتار پایدار هیسترتیک در هر سه قاب مهاربندی شده کمانش ناپذیر را تا لحظه گسیختگی نشان می دهند. قاب مهاربندی شده کمانش ناپذیر V شکل، به دلیل داشتن عمر خستگی بالاتر و نیز رفتار هیسترتیک مطلوب تر، بهترین عملکرد را از نظر خصوصیات خستگی در بین دیگر پیکربندی های رایج قاب مهاربندی کمانش ناپذیر دارد.

کلیدواژه‌ها


عنوان مقاله English

Investigation of low cycle fatigue performance of diagonal, V-shaped and chevron buckling restrained braced frames

نویسندگان English

Mohsen Gerami 1
Parshan Sedaghati 2
Mohsen Gerami 1
1 Associate professor
2 PHD student of Earthquake Engineering in Semnan University
چکیده English

Based on ASTM E1823 standard, fatigue phenomenon is the process of permanent, progressive and localized structural change which occurs to a material point subjected to strains and stresses of variable amplitudes which produce cracks which lead to total failure after a certain number of cycles.
During an earthquake fatigue failure can occur at loads much lower than tensile or yield strengths of material. Therefore material behavior under cyclic loading is an important design criterion.
Fatigue data are obtained from the experiments and are shown in S-N curves which represent stress or strain amplitude versus number of cycles. All fatigue ranges can be included generally in three categories. Ultra Low Cycle Fatigue (ULCF), Low Cycle Fatigue (LCF), and High Cycle Fatigue (HCF). HCF is recognized with low strain amplitude and high frequency, and LCF is a material deterioration which is described as high plastic strain amplitude and low frequency. ULCF involves a few cycles (less than 20) of large plastic strains. ULCF is of great importance for structural and earthquake engineers, because fatigue failure in structural members occurs generally in less than 10 cycles during a seismic event. Fatigue fracture in moment connections, or gusset plates and brace members are examples for ULCF or ductile fracture.
Fatigue life is expressed as the total number of stress cycles required for a fatigue crack to initiate and grow large enough to produce fatigue failure. Currently, two major methods are available for fatigue life prediction of structures. One type is based on material fatigue life curves (e.g., S–N curves or ε–N curves) and a damage accumulation rule. The other is based on fracture mechanics and crack growth analysis.
The Manson–Coffin law is the most widely used procedure to predict material failure under LCF and ULCF. But last researches showed that Manson–Coffin relation overestimates fatigue life in ULCF domain.
Miner’s rule is one of the most widely used cumulative damage models for failures caused by fatigue.
The rainflow method is a method for counting fatigue cycles from a time history. The counting of each load cycle and the relative damage produced must be done with extreme accuracy and care. Rainflow counting has been shown to be most effective. The rainflow method allows the application of Miner's rule in order to assess the fatigue life of a structure.
In this paper low cycle fatigue performance of restrained buckling braced frames with diagonal, V-shaped and chevron configurations are investigated. Last researches and experimental tests results of BRBs usually show very stable hysteresis behavior with an excellent low cycle fatigue life.
In this study For modeling the low cycle fatigue phenomenon, the “fatigue material” model in OpenSees is used. The fatigue material uses a modified rainflow cycle counting algorithm to accumulate damage in a material using Miner’s Rule. Once the Fatigue material model reaches a damage level of 1.0, the force (or stress) of the material becomes zero and the material is destructed completely.
By obtaining the hysteretic loops and also the cumulative damage charts of diagonal, V-shaped and chevron buckling restrained braced frames, the hysteretic behavior and fatigue life of them are evaluated. Buckling restrained braces in three configurations of concentrically braced frames, exhibited stable hysteretic behavior up to failure. Considering area of the hysteretic loops and low cycle fatigue life, V-shaped buckling restrained braced frame showed better low cycle fatigue performance.

کلیدواژه‌ها English

Low Cycle Fatigue
Buckling Restrained Braced Frame
Energy Dissipation
Fatigue Life
References
[1] Uang C. M. & Nakashima M. 2004 Steel buckling-restrained braced frames. (Chapter 16) In: Earthquake engineering: from engineering seismology to performance-based engineering, Y. Bozorgnia & V. V. Bertero (eds.), CRC Press, Boca Raton, Florida, USA.
[2] Calado L., Proenca J. M., Panao A., Nsieri E., Rutenbrg A. & Levy R. 2006 Buckling-Restrained Braces. PROHITECH WP5 Innovative Materials and Techniques. 4th general meeting in Istanbul (Turkey) on 6th–7th April 2006.
[3] Clark P., Aiken I., Kasai K., Ko E. & Kimura I. 1999 Design procedures for buildings incorporating hysteretic damping devices, Proceedings of the 68th Annual Convention, Structural Engineers Association of California Santa Barbara, California, USA.
 [4] Sabelli R., Mahin S. A. & Chang C. 2003 Seismic demands on steel braced-frame buildings with buckling-restrained braces. Engineering Structures, 25(5), 655–666.
[5] Uang C. M. & Kiggins S. 2006 Reducing Residual Drift of Buckling-Restrained Braced Frames as a dual system. Engineering Structures, 28(11), 1525-1532.
[6] Moradi S., Alam M. S. & Asgarian B. 2013 Incremental Dynamic Analysis of Steel Frames Equipped with NiTi Shape Memory Alloy Braces. The Structural Design of Tall and Special Buildings, 23(18), 1406-1425.
[7] Pham H. V.  2013 Performance-based assessment of Buckling-Restrained Braced Steel Frames retrofitted by self-centering Shape Memory Alloy Braces, Master’s thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology, Georgia, USA.
[8] Boardman B. 1990 Fatigue Resistance of Steels. In: ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, R. Steiner (ed.), ASM International, USA, pp. 673-688.
[9] Deluca D. P. 2001 Understanding Fatigue, ASME International Gas Turbine Institute, USA, 41(1) 7-10.
 [10] Kanvinde A. M. & Deierlein G. G. 2004 Micromechanical simulation of earthquake induced fracture in steel structures. Technical Report 145, John A. Blume, Earthquake Engineering Center, Stanford University, California, USA.
[11] Kanvinde A. M. & Deierlein G. G. 2005 Continuum Based Micro-Models for Ultra Low Cycle Fatigue Crack Initiation in Steel Structures, Structures Congress, Newyork, USA, ASCE pp. 1-11
[12] Martinez X., Oller S., Barbu L. G., Barbat A. H. & de Jesus A. M. P. 2015 Analysis of Ultra Low Cycle Fatigue problems with the Barcelona plastic damage model and a new isotropic hardening law. International Journal of Fatigue, 73, 1132–142.
[13] Toudashki H. H. & Motalebi A. 2007 Investigation of the material ‘s fatigue life based on the Miner’s rule. 15th international annual conference on Mechanical Engineering (ISME), Amir Kabir University of Technology, Tehran, Iran, (In Persian).
 [14] Nakamura H., Maeda Y., Sasaki T., Wada A., Takeuchi T., Nakata Y. & Iwata M. 2000 Fatigue properties of practical-scale unbonded braces, Nippon Steel Technical Report No. 82, Japan.
[15] Tsai K. C. & Lai J. W. 2002 A study of buckling restrained seismic braced frame. Structural Engineering, 17(2), 3–32, (In Chinese).
[16] Black C. J., Markis N. & Aiken I. 2002 Component testing, stability analysis and characterization of Buckling-Restrained Unbonded Braces, PEER Report 2002/8, Pacific Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, California, USA.
[17] Usami T., Wang C. & Funayama J. 2011 Low-Cycle Fatigue Tests of a Type of Buckling Restrained Braces. Procedia Engineering, 14, 956-964.
[18] Wang C., Usami T. & Funayama J. 2012 Evaluating the influence of stoppers on the low-cycle fatigue properties of high-performance buckling-restrained braces. Engineering Structures, 41, 167-176.
[19] Seismic provisions for structural steel buildings, 2005 American Institute of Steel Construction Inc. (AISC), Chicago, USA.
[20] Mazzoni S., McKenna F., Scott M. H. & Fenves G.L. 2006 OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center, Berkeley, California, USA.
[21] Tremblay R., Poncet L., Bolduc P., Neville R. & DeVall R. 2004 Testing and design of buckling restrained braces for Canadian application. Proceedings of the 13th WorldConference on Earthquake Engineering, Paper No. 2893, Vancouver, BC, Canada.
[22] Shemshadian M. E., Vafaei D., Zahrai S. M. & Vafaei J. 2010  Forward directivity and fling step effects on the controlling parameters of the buckling restrained barced frame. 5th national congress of civil engineering, Ferdowsi University of Mashhad, Mashhad, Iran, (In Persian).
[23] Abdollahzadeh G. R., Farzi-Bashir H. & Banihashemi M. R. 2014 Seismic Retrofitting of Steel Frames With Buckling Restrained and Ordinary Concentrically Bracing Systems with Various Strain Hardening and Slenderness Ratios. Journal of Rehabilitation in Civil Enginering, 2(2), 20-31.
[24] Daylami M. & Mahdavipour A. M. 2013 Probabilistic assessment of strain hardening ratio on BRBFs residual drift demand”, The 13th East Asia-Pacific Conference on Structural Engineering and Construction, Sapporo, Japan.
[25] Salmanpour A. H. & Arbabi F. 2011 Study of Seismic Behavior of Buckling Restrained Braced Frames. Modares Civil Engineering Journal, 10(2), 105-122, (In Persian).
[26] Hosseini S. M., Kenarangi H. & Fanaei N. 2014 Application of OpenSees software in modeling and analysis of structures, Azadeh publication, (In Persian).
[27] Lopez W. A. & Sabelli R. 2004 Seismic Design of Buckling-Restrained Braced Frames, Structural Steel Educational  Council, Steel Tips.