تصفیه رواناب سطحی با استفاده از سنگدانه‌های لایه‌های روسازی نفوذپذیر

نویسندگان
1 دانشکده عمران و محیط زیست، دانشگاه تربیت مدرس
2 عضو هیات علمی دانشکده عمران و محیط زیست دانشگاه تربیت مدرس
چکیده
در این تحقیق تاثیر سنگدانه‌های مختلف در لایه‌های روسازی نفوذپذیر جهت تصفیه رواناب شهری در مقیاس آزمایشگاهی مورد بررسی قرار گرفته است. در این راستا پس از تهیه سنگدانه‌های سرباره‌ای، سیلیسی و سنگ‌آهکی و آماده‌سازی راکتور‌ها، آزمایش‌ها در سیکل‌های متوالی به صورت پیوسته با استفاده از رواناب سنتزی انجام پذیرفت. کلیه آزمایش‌ها در راکتورهای استوانه‌ای شکل به ارتفاع 60 سانتیمتر و قطر 20 سانتیمتر که 50 سانتیمتر از ارتفاع آن (10 سانتیمتر لایه فیلتر و 40 سانتیمتر لایه اساس) توسط مصالح پر شده بود انجام شد. بر اساس نتایج بدست آمده اگر چه هر سه نوع سنگدانه مورد استفاده از توانایی قابل قبولی در تصفیه رواناب برخوردار بودند اما سرباره در مقایسه با سایر مصالح توانایی بالاتری در حذف آلاینده از خود نشان داد. در این تحقیق حداکثر میزان حذف COD، فسفر و جامدات از رواناب پس از گذشت 3 ساعت به ترتیب به میزان 60، 59 و 70 درصد بوده که پس از 120 ساعت به ترتیب به 98، 96 و 99 درصد افزایش یافت. همچنین در این پژوهش ظرفیت جذب بار آلی، فسفر و جامدات در ستون‌های حاوی سنگدانه‌ سرباره‌ای، به ترتیب برابر با 43/3، 21/0 و 10/22 ‌گرم به ازای هر کیلوگرم سنگدانه برآورد گردید. در ادامه داده‌های تجربی فرایند حذف بار آلی با مدل‌های سینتیکی شبه درجه اول، شبه درجه دوم و مدل سینتیکی پخش بین ذره‌ای مطابقت داده شد. بر ‌اساس نتایج حاصل، فرایند حذف بار آلی توسط هر سه سنگدانه مورد استفاده از مدل سینتیکی شبه مرتبه دوم تبعیت بیشتری داشته است.

کلیدواژه‌ها


عنوان مقاله English

The Application of Permeable Pavement Aggregate Layers in Runoff Water Treatments

نویسندگان English

Amir Ghasemi Moghadam 1
Nader Mokhtarani 2
2 Assistant Professor, Civil & Environmental Engineering faculty, Tarbiat Modares University
چکیده English

Urban runoffs usually contain a large variety of pollutants such as heavy metals, organic compounds, nutrients, solids, and de-icing agents. These are normally accumulated on impervious urban surfaces over time. Hence, the runoff itself becomes a wastewater that could create substantial degradation of water quality in receiving area. There are many alternative management strategies for treating these contaminants. Most of the approved stormwater management measures are difficult to be implemented on a wide scale (due to infrastructure and space/cost constraints). Permeable pavement is one of the urban runoff management methods that are widely used in order to reduce storm runoff flow and volume, and minimize pollution conveyance to receiving waters. Pervious pavement systems consist of a permeable pavement surface layer and one or more underlying aggregate layers designed to temporarily store storm-water. Runoff treatment using three aggregate layers, namely steel slag, limestone and silica aggregates were applied both as filter and pavement base layers. The research was conducted at laboratory scale and in continuous mode. All the experiments were conducted in cylindrical reactors of 0.6 m height and 0.2 m diameter. Each column was filled up to an average depth of 0.5m (0.1 m for filter layer and 0.4 m for the base layer). In order to determine the lifespan of the media, synthetic runoff in successive cycles was injected into the column continuously. Results from the study showed that the base and the filter layers of the permeable pavement can reduce the total range of runoff pollutants effectively with high removal percentages. In all experiments the rate of pollutant removal at the initial time of reaction was faster. However, these were gradually decreased and after 120 hours approximately the maximum removal efficiency was achieved. Comparing the effects of the three aggregates types, the steel slag aggregates exhibited better performance. The treatment process showed that the maximum removal of COD, phosphate and total solids from runoff in 3 hours, were 61, 59 and 70 percent respectively. These were increased to 98, 96 and 99 percent after 120 hours. In addition, the total capacity of slag aggregates for removing COD, P-PO4 and TS parameters were estimated to be 3.43, 0.21 and 22.10 g/Kg respectively. The testing results indicated that after the slag aggregates, limestone materials showed a high ability to remove pollutants from runoff waters as compared with the silica aggregates. The kinetic study resulted that the pseudo-second order kinetics equation, compared with the pseudo-first order and intra-particle diffusion models, described better the removal of organic compound absorption (COD removal) from the storm water. In this study the rate constant of the reaction (K) for the COD removal via steel slag, limestone and silica aggregates were estimated to be 0.31, 0.31 and 0.30 g mg−1 min−1 respectively. The correlation coefficients (R2) under different conditions were also calculated to exceed 97%. Since steel slag is a byproduct of steel production factories, its application as a road-building material, would be an appropriate alternative pavement layer in protecting the environment and conserving the natural resources.

کلیدواژه‌ها English

COD
Permeable pavement
Runoff
Phosphorus
total solids
3-   
[1] Scholz, M. 2006 Wetland systems to control urban runoff. Environmental Science and Technology, 25, 2542-2549.
[2] Reeves, R.L., Grant, S.B., Mrse, R.D., Copil Oancea, C.M., Sanders, B.F. and Boehm, A.B. 2004 Scaling and management of fecal indicator bacteria in runoff from a coastal urban watershed in Southern California. Environmental Science and Technology, 38, 2637-2648.
[3] ASCE and WEF, 1998 Urban runoff quality management. American Society of Civil Engineers (ASCE) Manuals and Report of Engineering Practice No. 87, Reston, VA and Water Environment Federation (WEF), Manual of Practice No. 23, Alexandria,  USA.
[4] Scholz, M. and Grabowiecki, P. 2007 Review of permeable pavement systems. Building and Environment, 42, 3830-3836.
[5] Kazemi, F. and Hill, K. 2015 Effect of permeable pavement basecourse aggregates on stormwater quality for irrigation reuse. Ecological Engineering 77, 189–195.
[6] Bentarzia, Y., Ghenaima, A., Terfousa, A.,  Wankob,  A., Feugeasc, F.,  Pouleta, J.B. and  Moséb, R. 2015 Hydrodynamic behavior of a new permeable pavement material under high rainfall conditions. Urban Water Journal, 1-10, DOI: 10.1080/1573062X.2015.1024688
[7] Imran, H.M.,  Akib, S., Karim M.R. 2013 Permeable pavement and stormwater management systems: a review.  Environmental technology, 34(17-20), 2649-56.
 
 [8] Pratt, C.J., Mantle, J.D.G. and Schofield, P.A. 1995 UK research into the performance of permeable pavement, reservoir structures in controlling storm water discharge quantity and quality. Water Science and Technology, 32, 63-69.
[9] Niemczynowicz, J. 1990 Swedish way to storm water enhancement by source control, In: Urban Storm water Quality Enhancement: Source Control, Retrofitting, and Combined Sewer Technology, pp. 156-158 New York, USA. American Society of Civil Engineers, 978-0-87262-759-8 / 0-87262-759-4 (print).
[10] Colandini, V., Legret, M., Brosseaud, Y., and Balades, J.D. 1995 Metallic pollution in clogging materials of urban porous pavements. Water Science and Technology, 32(1), 57-62.
[11] Brattebo, B.O., Booth, D.B. 2003 Long-term stormwater quantity and quality performance of permeable pavement systems. Water Research, 37, 4369-4376.
[12] Aryal, R., Beecham, S., & Lee, B. K. 2015 Evaluation of Particle Transport in Permeable pavements under oil loadings. KSCE Journal of Civil Engineering. 1-5. DOI 10.1007/s12205-015-0046-4
 
[13] Eisenberg B., Lindow K.C., Smith D.R. 2015 Permeable pavements, ASCE, USA.
 
 [14] Pratt, C.J., Mantle, J.D.G., and Schofield, P.A. 1989 Urban stormwater reduction and quality improvement through the use of permeable pavements. Water Science and Technology, 21, 769-778.
[15] Yong, C.F., Deletic, A., Fletcher, T.D., Grace, M.R. 2008 The clogging behavior and treatment efficiency of a range of porous pavements. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
[16] Roseen, R. M., Ballestero, T. P., Houle, J. J., Joshua F. B., and Houle, K. M. 2012 Water Quality and Hydrologic Performance of a Porous Asphalt Pavement as a Storm Water Treatment Strategy in a Cold Climate. Journal of Environmental Engineering, 138, 81-89.
[17] Bean, E.Z., Hunt, W.F., and Bidelspach, D.A. 2007 Evaluation of four permeable ­­pavement sites in eastern North Carolina for runoff reduction and water quality impacts. Journal of Irrigation and Drainage Engineering, 128, 1124-1131.
[18] Okochi N.C., McMartin D.W. 2011 Laboratory investigations of storm water remediation via slag: Effects of metals on phosphorus removal. J Hazard Mater., 187(1-3), 250-257.
[19] Erickson, A. J., Gulliver, J. S., Weiss, P. T. 2012 Capturing phosphates with iron enhanced sand filtration, water research. 46, 3032-3042.
[20] Standard Methods for the Examination of Water and Wastewater 2005 21th edn, American Public Health Association/American Water Works Association/ Water Environment Federation, Washington DC, USA.
[21] Kadurupokune, N. and Jayasuriya, N. 2009 Pollutant load removal efficiency of pervious pavements: is clogging an issue. Water Science and Technology, 60, 1787-1794.
[22] Berbee, R., Rijs, G., de Brouwer, R. and van Velzen, L. 1999 Characterization and treatment of runoff from highways in the Netherlands paved with impervious and pervious asphalt. Water Environment Research, 71, 183-190.
[23] Balades, J.D., Legret, M., and Madiec, H. 1995 Permeable pavements-pollution management tools. Water Science and Technology; 32, 49-56.
[24] Hatt, B. E., Fletcher, T. D., and Deletic, A. 2007 Treatment performance of gravel filter media: Implications for design and application of storm water infiltration systems. Water Research, 41, 2513 – 2524.
[25] Nielsen, J., Lynggaard-Jensen, A., and Hasling, A., 1994 Purification efficiency of Danish biological sand filter systems. Water Science and Technology, 28 (10), 89-97.
[26] Fach, S., Geiger, W.F. 2005 Effective pollutant retention capacity of permeable pavements for infiltrated road runoffs determined by laboratory tests. Water Science and Technology, 51, 37-45.
[27] Liu, S. Y., Gao, J., Yang, Y. J. 2010 Adsorption intrinsic kinetics and isotherms of lead ions on steel slag, J. Hazard. Mater, 173, 558–562.
[28] Uzun A., 2006 Kinetics of the adsorption of reactive dyes by chitosan. Dyes and Pigments, 70, 76-83