بررسی کارایی فرایند US/H2O2 در حذف بنزآلدئید از محلول های آبی

نویسندگان
1 عضو هیات علمی
2 مدیر پزوهش
چکیده
- هدف از انجام این مطالعه، بررسی و ارزیابی فرایند اکسیداسیون پیشرفته US / H2O2 در تخریب ترکیب سمی بنزآلدئید می باشد. در این راستا اثر پارامترهای pH، غلظت اولیه بنزآلدئید، غلظت اولیه هیدروژن پراکسید، دامنه ارتعاش و فرکانس التراسونیک روی تخریب بنزآلدئید مورد مطالعه قرارگرفت. نتایج نشان داد که تخریب بنزآلدئید در سیستم US / H2O2 تحت تاثیر پارامترهای pH، غلظت اولیه بنزآلدئید، غلظت اولیه هیدروژن پراکسید، دامنه ارتعاش و فرکانس التراسونیک است. میزان تخریب بنزآلدئید با التراسونیک تنها در غلظت 10 میلی گرم بر لیتر از بنزآلدئید، pH=3 ، فرکانس 1 سیکل بر ثانیه و دامنه ارتعاش 100 میکرومتر در حدود 80% بدست آمد. نتایج درصد حذف بنزآلدئید با پراکسید هیدروژن تنها در غلظت 10 میلی گرم بر لیتر از بنزآلدئید، غلظت 100 میلی گرم بر لیتر از هیدروژن پراکسید و pH=3 ذرحدود 16% بود. نتایج نشان داد که هیدروژن پراکسید تنها برای تخریب بنزآلدئید موثر نیست در حالیکه ترکیب H2O2 با التراسونیک درصد تخریب بنزآلدئید را افزایش داده است. به طوریکه در مدت زمان 60 دقیقه، دامنه ارتعاش 100، فرکانس 1 سیکل بر ثانیه، غلظت بنزآلدئید 10 میلی گرم بر لیتر ، غلظت هیدروژن پراکسید 100 میلی گرم بر لیترو pH=3، بیشترین درصد حذف با راندمان 91% حاصل شد. مطابق نتایج تخریب بنزآلدئید در فرآیند التراسونیک / هیدروژن پراکسید با سینتیک شبه مرتبه اول تطابق خوبی داشت. بنابراین تخریب سونوشیمیایی بنزآلدئید با فرایند US / H2O2 می تواند روش موثری برای حذف بنزآلدئید از محلولهای آبی باشد.

کلیدواژه‌ها


عنوان مقاله English

Evaluation of Ultrasound/H2O2 Process Efficiency in Removal of Benzaldehyde from Aqueous Solutions

چکیده English

Aromatic aldehydes are toxic compounds present in different waste-waters coming from the chemical and petrochemical industries. Their environmental fate may end up by their occurrence in the ground water through the infiltration/deep percolation processes of rain and snow water. Therefore, this kind of substances is contained not only in various industrial wastewaters, but occasionally also in drinking water. Hence, the degradation of such compounds in water and wastewater is still of special interest for many researchers. Benzaldehyde is an aromatic aldehydes used chiefly as a precursor to other organic compounds, ranging from pharmaceuticals to plastic additives and it has been classified as a hazardous substance by the United States Environmental Protection Agency. As a result, the use of alternative treatment technologies, aiming to mineralize or transform refractory molecules into others which could be further biodegraded, is a matter of great concern. Among them, advanced oxidation processes (AOPs) have already been used for the treatment of water and wastewater containing recalcitrant organic compounds such as pesticides, surfactants, colouring matters, pharmaceuticals and endocrine disrupting chemicals. Moreover, they have been successfully used as pretreatment methods in order to reduce the concentrations of toxic organic compounds that inhibit biological wastewater treatment processes. The main mechanism of AOPs function is the generation of highly reactive free radicals. Hydroxyl radicals (HO•) are effective in destroying organic chemicals because they are reactive electrophiles (electron preferring) that react rapidly and nonselective with nearly all electron-rich organic compounds. They have an oxidation potential of 2.33 ev and exhibit faster rates of oxidation reactions comparing to conventional oxidants such as O3. The diverse methods used for generating these radicals are photo catalysis and sonochemistry methods. A new alternative sonochemistry approach offers a solution for combating the persistent water and wastewater organic pollutants. Sonochemical degradation could be used for organic pollutant removal in aqueous solutions. The advantages of using ultrasound irradiation are the simplicity of its use , the ultrasound does not require additional chemicals, and it can be used for treatment of turbid solutions. In this research, ultrasonic/H2O2 advanced oxidation process has been studied for degradation of aqueous solution of benzaldehyde. The effect of key parameters such as ultrasonic frequency, ultrasonic amplitude, time, pH of solution and initial concentration of the benzaldehyde on the removing rate of benzaldehyde are investigated. Different concentrations of benzaldehyde and H2O2 were prepared and the solutions were exposed to ultrasonic treatment (UP 400S model). The experiments was carried out in a batch reactor for 60 min and each 5 min an aliquot was taken from the solutions. Absorbance of sampling solutions was recorded by UV-Vis spectrophotometer of Hack (DR 5000-15 V model). The results show that, the removal rate increases with the increase of time, ultrasonic frequency and amplitude and decreases with the increase of solution pH, H2O2 and benzaldehyde concentrations. As data shown, the degradation of benzaldehyde in ultrasonic/ H2O2 process best fitted by pseudo first order kinetic. It can be conclude the combined of ultrasonic/ H2O2 led to 91% degradation of benzaldehyde after 60 min.

کلیدواژه‌ها English

Benzaldehyde
Ultrasound
H2O2
degradation
1. José Gonz lez-Garcia J.,  Saez V., Tudela i., Diez-Garcia M.I., Deseada Esclapez M. & Louisnard  O. 2010   Sonochemical Treatment of Water Polluted by Chlorinated Organocompounds, A Review. Water, 2(1), 28-74.
2. Zhang K., Gao N., Deng Y., Lin T. F., Ma Y., Li L. & Sui M. 2011 Degradation of Bisphenol−A using ultrasonic irradiation assisted by low−concentration hydrogen peroxide. J. Environ. Sci., 23(1), 31-36.
3. Malani R. S., Khanna S., Chakma S. & Moholkar V. S. 2014 Mechanistic insight into sono-enzymatic degradation of organic pollutants with kinetic and thermodynamic analysis. Ultrasonics Sonochemistry, 21(4), 1400-1406.
4. Chakma S. &  Moholkar V.S. 2013 Physical mechanism of sonofenton Process. American Institute of Chemical Engineers, 59(11), 4303-4313.
5.  Bhasarkar J. B., Chakma S. & Moholkar V. S. 2013 Mechanistic features of oxidative desulfurization usingsono−fenton−peraceticacid(Ultrasound/Fe2+−CH3COOH−H2O) system. Industrial & Engineering Chemistry Research, 52(26), 9038-9047.
6. Seid Mohammadi  A. & Movahedian Attar  H.  2011 p-Chlorophenol oxidation in industrial effluent by ultrasonic/fenton technology. Water and Wastewater22(4), 43-49.
7. Duran A., Monteagudo J. M., Sanmartin, I. & Gomez P. 2013 Homogeneous sonophotolysis of food processing industry wastewater: Study of synergistic effects, mineralization and toxicity removal. Ultrasonics sonochemistry, 20(2), 785-791.
8. Upadhyay  K. &  Khandate  G. 2012 Ultrasound assisted oxidation process for the removal of aromatic contamination from effluents: A Review.  Universal Journal of Environmental Research and Technology , 2(6), 458-464.
9. Ji G., Zhang B. & Wu Y. 2012 Combined ultrasound/ozone degradation of carbazole in APG1214 surfactant solution. Journal of Hazardous Materials, 225−226 (1),1-7.
10. Park J. S.,  Her N., Oh J. & Yoon Y.  2011 Sonocatalytic degradation of Bisphenol−A and 17 α−ethinyl estradiol in the presence of stainless steel wire mesh catalyst in aqueous solution. Separation and Purification Technology, 78 (2), 228-236.
11.  Chakma S. &  Moholkar V.S. 2014  Investigations in Synergism of Hybrid Advanced Oxidation Processes with Combinations of Sonolysis + Fenton Process + UV for Degradation of Bisphenol A. Industrial & Engineering Chemistry Research, 53(6), 6855–6865.
12.Taghizadeh M.T. & Abdollahi  R. 2015 Sonophotocatalytic degradation of amylose in the precence of  ZnO nanoparticles. The 15th Iranian National Congress of Chemical Engineering (IChEC 2015), University of Tehran,Tehran,Iran, 17-19Feb. 2015. 

13. Wang C. &  Jian J.J. 2015 Degradation and Detoxicity of Tetracycline by an Enhanced Sonolysis. Journal of Water and Environment Technology, 13 (4) , 325-334.


14. Li,  J.T.,  Bai,  B. & Song,  Y.L 2010 Degradation of acid orange 3 in aqueous solution by combination of fly ash/H2O2 and ultrasound irradiation. Indian Journal of Chemical Technology, 17(1), 198-203.
15. Rahmani  Z.,  Kermani  M., Gholami  M., Jonidi Jafari  A. & Mahmoodi  N.M. 2012 Effectiveness of photochemical and sonochemical processes in degradation of basic violet 16 dye from aqueous solutions. Journal of Environmental Health Science & Engineering, 9(1),1735-1979.
16. Rajoriya R.K., Prasad B., Mishra I.M. & Wasewar K.L. 2007 Adsorption of Benzaldehyde on Granular Activated Carbon:Kinetics, Equilibrium, and Thermodynamic. Chemical and Biochemical Engineering Quarterly,  21(3), 219–226.
17.Pourzamani H., Samani Majd A.M., Movahedian Attar H. & Baina B.  2015 Natural Organic Matter Degradation Using Combined Process of Ultrasonic and Hydrogen Peroxide Treatment.  Anuario do Instituto de Geociencias, 38(1), 63-72.
18. Katsumata H., Kaneco S., Suzuki T., Ohta K.. &
Yobiko Y.  2007 Sonochemical degradation of
2,3,7,8-tetrachlorodibenzo-p-dioxins in aqueous
solution with Fe(III)/UV system. Chemosphere, 69(8), 1261-1266.
19.          Mohod A.V. & Gogate P.R. 2011 Ultrasonic degradation of polymers: Effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA). Ultrasonics Sonochemistry, 18(3), 727–734.
20. Zhang K., Gao N., Deng Y., Lin T.F., Ma Y., Li L. & Sui M. 2011 Degradation of bisphenol-A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide.  Journal of Environmental Sciences, 23(1), 31-36.
 
21. Guo Z., Feng R., Li J.,  Zheng Z. &  Zheng Y.  2008 Degradation of 2,4-dinitrophenol by combining sonolysis and different additives. Journal of Hazardous Materials. 158(1),  164-169.

22. Verma A.,  Kaur H. & Dixit D. 2013 Photocatalytic, Sonolytic and Sonophotocatalytic Degradation of 4-Chloro-2Nitro Phenol.  Archives of Environmental Protection196 (2), 63-74.


23. Shokoohi,  R., Mahvi,  A.H., Bonyadi, Z., Samarghandi,  M.R. & Karimi,  M.  2011 The use of sonochemical technology for cyanide removal from aqueous solutions in the presence of hydrogen peroxide. Water and Wastewater, 22(3), 32-37.
24. Maleki A., Mahvi A.H., Ebrahimi R. & Zandsalimi Y. 2010 Study of photochemical and sonochemical processes efficiency for degradation of dyes in aqueous
Solution.  Korean Journal of Chemical Engineering, 27(6), 1805–1810.
25. Zhang H. & Zhang Y.  2007 Decolorisation and mineralisation of CI Reactive Black 8 by the Fenton and ultrasound/Fenton methods. Coloration Technology, 123 (2),101–105.
26.  Hou L.,  ZhangH.,  Wang  L. &  Chen L. 2013 Ultrasound-enhanced magnetite catalytic ozonation of tetracycline in water.                Chemical Engineering Journal, 229(1) , 577–584.

27. Bali U., Catalkaya E. & Şengül  F.  2004 Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2and UV//H2O2/Fe2+:A comparative study. Journal of Hazardous Materials. 114 (1-3), 159–166.


28. Esplugas S., Gimenez J., Contreras S., Pascual E. & Rodriguez M. 2002 Comparison of different advanced oxidation processes for phenol degradation. Water
Research, 36(4),  1034–1042