آنالیز زمان کاهش شتاب منتهی به ازدحام مبتنی بر الگوهای رفتاری راننده

نویسندگان
1 دانشگاه بین المللی امام خمینی(ره)
2 دانشکده فنی مهندسی دانشگاه امام خمینی قزوین
چکیده
در این مقاله، الگو های رفتاری راننده پیرو مبتنی بر تئوری نامتقارن رفتاری و پدیده هیسترسیس ترافیک در داده های عبوری NGSIM دسته بندی و سپس مبتنی بر مدل تعقیب خودرو Newell پارامترهای τ,δ متعلق به آخرین موج کاهش شتاب منتهی به ازدحام و موج توقف منتهی به ازدحام محاسبه می گردند. زمان بین دو فاز توقف و ازدحام مبتنی بر فازبندی مسیر حرکت وسیله نقلیه پیرو با شناسایی نمودن زمان بین دو فاز دریافت آخرین موج کاهش شتاب تا زمان ورود به توقف، نقاط دریافت موج توقف منتهی به ازدحام و زمان موج ورود به ازدحام شناسایی می شوند. الگوهای شبکه عصبی ایجاد می شوند تا تاثیر پارامترهای موج کاهش شتاب، موج توقف، زمان بین فاز کاهش شتاب - توقف و فاز توقف- ازدحام مبتنی بر الگوهای رفتاری بر زمان بین دو فاز کاهش شتاب منتهی به ازدحام آنالیز شوند. نتایج آنالیز نشان می دهد که مبتنی بر هر سه الگوی رفتاری، پارامتر موج کاهش شتاب منتهی به ازدحام و همچنین زمان فاز توقف منتهی به ازدحام موثرترین پارامتر بر زمان بین دو فاز می باشند. مبتنی بر الگوی عملکرد زیاد – محتاط افزایش موج کاهش شتاب منتهی به ازدحام منجر به کاهش زمان بین دو فاز و مبتنی بر الگوی عملکرد کم – محتاط منجر به افزایش زمان بین دوفاز و مبتنی بر الگوی رفتاری عملکرد پیوسته افزایشی – محتاط منجر به افزایش زمان بین دو فاز می گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Analyzing deceleration time lead to congestion in based on behavior patterns

نویسندگان English

arsalan salehikalam 1
ali abdi 2
ali aminrad 2
1 student
چکیده English

Different reasons cause traffic oscillation such as: sudden speed drop of leader vehicle. Stop and go traffic commonly observed in congested freeway traffic result in traffic oscillation. When follower driver of platoon receives the last released wave of downstream to upstream in the traffic oscillation, driver makes different reactions proportional to released wave. They result in forming different behavioral patterns and behavior diversion from equilibrium driver. Follower vehicle drivers of platoon make different reactions to receiving wave based on behavior patterns. In this paper, this study employs vehicle trajectory data from Next Generation Simulation (NGSIM) program. Platoons of vehicles identified through a traffic disturbance classify in deceleration and acceleration phase based on driver behavior and hysteresis in traffic oscillation. Driver behavior in deceleration phase lead to congestion classify into four behavioral patterns: under reaction, under constant reaction, over reaction, over constant reaction based on maneuvering errors of follower driver. And also, in acceleration phase based on traffic hysteresis it classifies into two categories: aggressive and timid behavior. In this search, we can study only three driver behaviors: Over Reaction-Timid, Over Constant Reaction-Timid, Under Reaction-Timid because of vehicle trajectories data failure. When follower vehicle in traffic oscillation receives the last deceleration wave lead to congestion, follower vehicle deviates with equilibrium behavior, Newell trajectory, based on driver behavioral patterns. Every car-following model is used to explain the dependency of the follower vehicle trajectory, and its position at time t, to leader vehicle. According to fig.4, if leader vehicle (n-1), moves with constant speed (v), the follower vehicle must move with constant speed (v), too. Spacing between follower and leader vehicles at the time (t) can be changed, but if the freeway was homogenous, the spacing must be constant at approximately Sn; however, it can be varied for different types of vehicles. In this case, all the vehicles are considered as the same type. According to fig 5.a, in the Newell`s model, when a leader vehicle changes its speed from v to v`, the disturbance wave by speed of d^i/τ^i , will be sent to follower vehicle. This process results in an increase in acceleration of follower vehicle. In this model, di, τi are considered constant and independent of speed. According to fig.5.b, these characteristics result in linear relationship between speed and spacing s^i=d^i+τ^iv. Next, neural network models are developed to analyze the relationship between the microscopic parameters and time of two phases. Neural Networks are kinds of mathematical models characterized by a huge parametric space and flexible structure, and also, inspired by human brain neurons. In this article Multi-Layer Perception (MLP) related to free-Forward neural network is used by following the backward error propagation regulation, including 3 different Layers, namely, input layer, hidden layer and output layer. In comparison to more complex neural network structures, the advantage of Multi-Layer perception is its procedure according to universal function approximation. Although by choosing the suitable active Multi-Layer perception function, the direct relationship with the statistical equal model is available, Multi-Layer perception with the active mathematical function may be considered as a general sample of mathematical regression model. There is some progress in different methods that enable the neural network to identify the impacts of input on the changes of output, more precisely, i.e., information measurement theory, partial derivative and etc. Based on three behavior patterns, analysis results present that are most effective two parameters: deceleration wave lead to congestion and stop phase time. increasing deceleration wave results in reducing time between two phases based on over reaction-timid, and results in increasing it based on under reaction-timid and pattern and over constant up reaction – timid. And also, results of stop phase lead to congestion present based on three behavior patterns that increasing stop phase results in increasing time between two phases.

کلیدواژه‌ها English

"Deceleration phase time lead to congestion"
" Stop and go traffic"
" NGSIM data trajectory"
" Behavior patterns"
" Neural Networks"
 
[1] Zheng Z., Ahn S., Chen D. & Laval J. 2011 Applications of wavelet transform for analysis of freeway traffic: bottlenecks, transient traffic, and traffic oscillations. Transportation Research Part B, 45 (2), 372–384.
[2] Zheng Z., Ahn S., Chen D. & Laval J. A. 2011b Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform. The 19th International Symposium on Transportation and Traffic flow Theory, 55 (8), 717–731.
[3] Bilbao-Ubillos J. 2008 The costs of urban congestion: estimation of welfare losses arising from congestion on cross-town link roads. Transportation Research Part A, 42 (8), 1098–11082.
[4] Ahn S. & Cassidy M. 2006 Freeway traffic oscillations and vehicle lane-change manoeuvres. In: Heydecker. 17th International Symposium on Transportation and Traffic Theory, 48 (6), 241–254.
[5] Laval J. A. & Daganzo C. F. 2006 Lane-changing in traffic streams. Transportation Research Part B, 40 (3), 251–264.
[6] Koshi M., Kuwahara M. & Akahane H. 1992 Capacity of sags and tunnels in japanese motorways. ITE Journal, 45 (7), 17–22.
[7] Laval J. A. 2006 Stochastic processes of moving bottlenecks: Approximate formulas for highway capacity. Transportation Research Record 1988, 22 (2), 86–91.
[8] Newell G. F. 1962 Theories of instability in dense highway traffic. Journal of the Operations Research Society of Japan 5, 25(5), 39–54.
[9] Mauch M. & Cassidy M. 2002 Freeway Traffic Oscillations: Observation and Predictions. The 15th International Symposium on Transportation and Traffic flow Theory, 35(4), 38–48.
[10] Ahn S. & Cassidy. M. 2007 Freeway Traffic Oscillations and Vehicle Lane-Changing Maneuvers. The 17th International Symposium on Transportation and Traffic Theory, 38(8), 691-710.
[11] Newell G. F. 1965 Instability in dense highway traffic, a Review, Proceedings of the Second International Symposium on Transportation and Traffic Theory, London, 21(5), 73-83.
[12] Newell G. F. 2002 A Simplified car-following theory: a lower order model, Transportation Research Part B, 36 (4), 196-205.
[13] Del Castillo J. M. 2001 Propagation of perturbations in dense traffic flow: a model and its implications. Transportation Research Part B, 35 (7), 367-389.
[14]‌ Kim T. & Zhang H.M. 2004 Gap time and stochastic wave propagation. IEEE Intelligent Transportation Systems Conference, 36(8), 88-93.
[15] Yeo H. & Skabardonis A. 2009 Understanding stop-and-go traffic in view of asymmetric traffic theory, Transportation and Traffic theory, 28(7), 99-115.
[16] Laval J. A. & Leclercq L. 2010 A Mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Philosophical Transactions of The Royal Society A, 36 (19), 4519-4541.
[17] Laval A. J. 2010 Hysteresis in Traffic Flow revisited: An improved measurement method, Transportation Research, Part B, 45 (2), 385–391.
[18] Forbes T., Zagorski, Holshouser E. & Deterline W.A. 1958 Measurement of driver reactions to tunnel conditions. Proceedings of Highway Research Board, 37 (7), 345-357.
[19] Edie L. & Baverez E. 1967 Generation and propagation of stop-start traffic waves, Proceedings of Third International Symposium on the Theory of Traffic Flow, 48 (11) , 26-37.
[20] Herman R. & Potts R. 1961 Single-lane traffic theory and experiment. Proceedings of Symposium on the Theory of Traffic Flow (R. Herman Ed.). Elsevier publishing Co. Amsterdam, 39 (13), 120-146.
 
[21] Treiterer J, & Myer J. 1974 The hysteresis phenomenon in traffic flow. Proceedings of the Sixth Symposium on Transportation and Traffic Flow Theory. D. J. Buckley (Ed.), 19 (14), 213-219.
[22] Zhang H. M. 1999 A mathematical theory of traffic hysteresis. Transportation Research Part B, 33 (17), 11-23.
[23] Zhang, H. M. & Kim T. 2005 A car-following theory for multiphase vehicular traffic flow. Transportation Research Part B, 39 (9), 385-399.
[24] Laval A. J. 2010 Hysteresis in the fundamental diagram: impact of measurement methods, 89th Annual Meeting of the Transportation Research Board, Washington, D.C., 28 (18), 18-33.
[25] Ahn S., Vadlamani S. & Laval J.A. 2012 A method to account for non-steady conditions in measuring traffic hysteresis. Transportation Research Part C, 34 (28) , 138-147.
[26] Chen D., Laval J. A., Zheng Z. & Ahn S. 2012 Traffic Oscillations: A Behavioral Car-Following Model. Transportation Research Part B, 46 (6), 744-761.
[27] Chen D., Laval J. A., Ahn S. & Zheng Z. 2012 Microscopic Traffic Hysteresis in Traffic Oscillations: A Behavioral Pespective. Transportation Research Part B, 46 (10) , 1378-1388.
[28] Trajectory Explorer. Accessed at: http://trafficlab.ce.gatech.edu/tools.html.
[29] Orfanou F., Vlahogianni E. & Karlaftis M. 20121 Identifying Features of Traffic Hystersis on Freeways. Transportation Research Part 91th, 42 (12), 1571-1587.
[30] Karlaftis M. G. & Vlahogianni E. I. 2011 Statistics versus Neural Networks in Transportation Research: Differences, Similarities and Some Insights. Submitted to Transportation Research Part C: Emerging Technologies. 19 (3), 387-399.
[31] Principe C. J., Euliano R. N. & Lefebvre W. C. 1999 Neural and Adaptive Systems – Fundamentals Through Simulations. John Wiley & Sons, 18 (5), 47-62.
 [32] NGSIM. Accessed at: http://ngsim-community.org/
[33] Savitzky A. & Golay M. J. E. 1964 Smoothing and differentiation of data by simplified least squares procedures, 36 (8), 1627–1639.