بررسی آزمایشگاهی و تحلیلی تقویت اتصالات تیر به ستون بتنی آسیب دیده توسط ورقه‌های کامپوزیتی CFRP

نویسندگان
1 دانشگاه فردوسی مشهد
2 دانشگاه فردوسی مشهد- دانشکده مهندسی- گروه مهندسی عمران
چکیده
در این مقاله اتصالات خارجی تیر به ستون بتنی تحت اثر بارهای چرخه ای مورد آزمایش قرار گرفتند. پس از آسیب اولیه در نمونه ها، تقویت توسط ورقه های FRP انجام شده و اتصالات مجددا آزمایش شدند. سپس اتصال مبنا و اتصالات تقویت ‌شده با FRP توسط نرم‌افزار Opensees مدلسازی گردیده و نتایج با رفتار آزمایشگاهی آن‌ها مقایسه گردید. در ادامه تاثیر عواملی همچون افزایش بار محوری ستون و وجود دال عرضی متصل به تیر در حالت‌های با و بدون بار ثقلی بر روی کف بصورت تحلیلی با استفاده از نتایج مدلسازی مورد بررسی قرار گرفت. با توجّه به نتایج بدست آمده، با افزایش خسارت در اتصالات، ظرفیت باربری، سختی و استهلاک انرژی آنها کاهش می‌یابد. همچنین خسارت در اتصالات تا سطح آسیب اولیّه به میزان 1/5% دریفت طبقه با استفاده از ورقه‌های FRP قابل جبران می‌باشد. مقایسه‌ی پارامترهای لرزه‌ای اتصالات نشان می‌دهد افزایش بار محوری ستون از 5% به 10% ظرفیت فشاری اسمی مقطع ستون باعث افزایش 5 تا 12 درصدی ظرفیت باربری و سختی اتصال می‌گردد. بعلاوه، افزایش بار محوری اثرات چندانی بر افزایش انرژی تلف شده ندارد. همچنین وجود دال عرضی افزایش ظرفیت و استهلاک انرژی را در پی دارد. اثرات دال عرضی در حالت بدون بار ثقلی بیش از حالت وجود بار می‌باشد.

کلیدواژه‌ها


عنوان مقاله English

Experimental and analytical investigation of damaged concrete beam-column joints strengthened by CFRP composites

نویسندگان English

Hashem Shariatmadar 1
Ebrahim Zamani Beydokhti 2
1 Ferdowsi University of Mashhad
2 Ferdowsi University of Mashhad
چکیده English

The scope of this study is to investigation of the rehabilitation of concrete beam column joints retrofitted by use of carbon-fibre-reinforced plastics (CFRPs) to achieve a safe, economic and practicable level of seismic damage. This paper investigates analytically the efficiency of the strengthening technique at improving the seismic behaviour of damaged structures. 4 beam-column connections are tested under reversed cyclic load. The connections have none-seismic detailing of rebars, i.e. no transverse rebar and seismic stirrups are used in the joint core and beam and column critical end zones, respectively. The joints are damaged in different levels and then retrofitted by carbon fibre reinforced materials (CFRP sheets). The strengthened joints were tested again to reach the ultimate drift capacity. The experimental results show that the beam column joints could be retrofitted by external bonding of FRP sheets until a limited level. This level determined for tested joint approximately equal to 1.5% story drift. The specimens initially damaged until 1% and 1.5% drifts showed the capacity increase up tp 5% and 3%, respectively. If the damage level is higher than this repair-ability level, other rehabilitation methods may be useful. Then, to simulate the behaviour of joints, a numerical model was developed in the OpenSees framework version 2.4.0. The tested joints such as reference joint and retrofitted joints are analyzed by Opensees nonlinear software. The open source Opensees software has several models for concrete and reinforcement rebar materials possible for considering reloading / unloading stiffness deterioration and hysteretic energy dissipation during reversed cyclic loads. Also nonlinear beam-column elements with spread or concentrated plasticity make this nonlinear software capable for high accurate simulation. The analytical models are used to assess the efficiency of the CFRP rehabilitation to set an optimum level of damage that the seismic behavior parameters could be compensated, safely, economically and practicable. The results of joint analysis are compared with experimental behavior of specimens. The hysteresis curves of the modeled beam column joints had a high level of accuracy in terms of stiffness degradation, moment carrying capacity, capacity degradation and energy dissipation. So, the model is calibrated for each level of damage intensities. The results showed that the model had a good accuracy in terms of load carrying capacity, secant stiffness, energy dissipation and joint ductility and the error was less than 10% between analytical and experimental results. Then, the effct of some variables such as column axial load and existence of transverse slab connected to the beam was analytically investigated. The results showed that increasing the axial load on the column increased the load carrying capacity and stiffness from 5% to 12% (related to initial damage intensity of the joint), but it had negligible effect on dissipated energy. Also modeling of transeverse slab revealed an increasing effect on the capacity, stiffness and energy. The positive effect was higher in absence of gravity loads on the slab. So, existence of transeverse slab with gravity load had negative effect on secant stiffness in specimens with initial damage higher than 1.5% story drift.

کلیدواژه‌ها English

Beam-column connection
Rehabilitation
FRP sheets
Nonlinear Analysis
Performance level
1.               Hörmann, M., H. Menrath, and E. Ramm, Numerical investigation of fiber reinforced polymers poststrengthened concrete slabs. Journal of engineering mechanics, 2002. 128(5): p. 552-561.
2.               Li, G., et al., Investigation into FRP repaired RC columns. Composite structures, 2003. 62(1): p. 83-89.
3.               Limam, O., V.T. Nguyen, and G. Foret, Numerical and experimental analysis of two-way slabs strengthened with CFRP strips. Engineering structures, 2005. 27(6): p. 841-845.
4.               Barbato, M., Efficient finite element modelling of reinforced concrete beams retrofitted with fibre reinforced polymers. Computers & Structures, 2009. 87(3): p. 167-176.
5.               Karbhari, V.M. and H. Niu, FE Investigation of Material and Preload Parameters on FRP Strengthening Performance of RC Beams II: Results. Journal of Reinforced Plastics and Composites, 2007.
6.               Malek, A.M., H. Saadatmanesh, and M.R. Ehsani, Prediction of failure load of R/C beams strengthened with FRP plate due to stress concentration at the plate end. ACI structural Journal, 1998. 95(2).
7.               Niu, H. and V.M. Karbhari, FE investigation of material and preload parameters on FRP strengthening performance of RC beams, I: model development. Journal of Reinforced Plastics and Composites, 2008. 27(5): p. 507-522.
8.               Pešić, N. and K. Pilakoutas, Concrete beams with externally bonded flexural FRP-reinforcement: analytical investigation of debonding failure. Composites Part B: Engineering, 2003. 34(4): p. 327-338.
9.               Rabinovich, O. and Y. Frostig, Closed-form high-order analysis of RC beams strengthened with FRP strips. Journal of Composites for Construction, 2000. 4(2): p. 65-74.
10.            Rabinovitch, O. and Y. Frostig, Nonlinear high-order analysis of cracked RC beams strengthened with FRP strips. Journal of Structural Engineering, 2001. 127(4): p. 381-389.
11.            Teng, J., et al., Intermediate crack-induced debonding in RC beams and slabs. Construction and building materials, 2003. 17(6): p. 447-462.
12.            Yang, Z., J. Chen, and D. Proverbs, Finite element modelling of concrete cover separation failure in FRP plated RC beams. Construction and Building Materials, 2003. 17(1): p. 3-13.
13.            Parvin, A. and P. Granata, Numerical study of structural joints reinforced with composite fabrics. Structures and materials, 1998: p. 411-421.
14.            Mostofinejad, D. and S. Talaeitaba, Finite element modeling of RC connections strengthened with FRP laminates. Iranian Journal of Science and Technology, Transaction B, Engineering, 2006. 30(B1): p. 21-30.
15.            Parvin, A. and S. Wu, Ply angle effect on fiber composite wrapped reinforced concrete beam–column connections under combined axial and cyclic loads. Composite structures, 2008. 82(4): p. 532-538.
16.            Bertero, V.V. and E. Popov, Seismic Behavior of Ductile Moment-Resisting Reinforced Cocnrete Frames. ACI Special publication, 1977. 53.
17.            Filippou, F.C., E.P. Popov, and V.V. Bertero, Effects of bond deterioration on hysteretic behavior of reinforced concrete joints. 1983.
18.            Soroushian, P., K. Obasaki, and S. Marikunte, Analytical modeling of bonded bars under cyclic loads. Journal of Structural Engineering, 1991. 117(1): p. 48-60.
19.            Eligehausen, R., E.P. Popov, and V.V. Bertero, Local bond stress-slip relationships of deformed bars under generalized excitations. 1982.
20.            Lowes, L.N., A. Altoontash, and N. Mitra, Closure to “Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading” by Laura N. Lowes and Arash Altoontash. Journal of Structural Engineering, 2005. 131(6): p. 993-994.
21.            Mitra, N. and L.N. Lowes. Evaluation and advancement of a reinforced concrete beam-column joint model. in 13th World Conference on Earthquake Engineering. 2004.
22.            Shiohara, H., New model for shear failure of RC interior beam-column connections. Journal of Structural Engineering, 2001. 127(2): p. 152-160.
23.            Antonopoulos, C.P. and T.C. Triantafillou, Analysis of FRP-strengthened RC beam-column joints. Journal of composites for construction, 2002. 6(1): p. 41-51.
24.            Baglin, P.S. and R.H. Scott, Finite element modeling of reinforced concrete beam-column connections. ACI Structural Journal, 2000. 97(6).
25.            Hegger, J., A. Sherif, and W. Roeser, Nonlinear finite element analysis of reinforced concrete beam-column connections. ACI Structural Journal, 2004. 101(5).
26.            Fleury, F., J.-M. Reynouard, and O. Merabet, Multicomponent model of reinforced concrete joints for cyclic loading. Journal of engineering mechanics, 2000. 126(8): p. 804-811.
27.            Park, R., A summary of results of simulated seismic load tests on reinforced concrete beam-column joints, beams and columns with substandard reinforcing details. Journal of Earthquake Engineering, 2002. 6(02): p. 147-174.
28.            Shin, M. and J.M. LaFave. Testing and modeling for cyclic joint shear deformations in RC beam-column connections. in 13th World Conference on Earthquake Engineering. 2004.
29.            Antonopoulos, C.P. and T.C. Triantafillou, Experimental investigation of FRP-strengthened RC beam-column joints. Journal of composites for construction, 2003. 7(1): p. 39-49.
30.            FEMA356. Prestandard and Commentary for the Seismic Rehabilitation of Buildings: Rehabilitation Requirement s. 2000. American Society of Civil Engineers Washington, DC.
31. Instruction for Seismic Rehabilitation of Existing Buildings NO 360.2007, Office of deputy for technical affairs, Management and planning organization , (In Persian).
32.         ACI440.2R-08, Guide for the design and construction of externally bonded FRP system for strengthening concrete structures, in ACI 440.2R-08. 2008: Michigan (USA).
33.         ACI Committee 374, Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary (ACI 374.1–05). 2005, American Concrete Institute, Farmington Hills Michigan, USA.
34.         McKenna, F., G. Fenves, and M. Scott, Open system for earthquake engineering simulation. University of California, Berkeley, CA, 2000.
35.         Mander, J.B., M.J. Priestley, and R. Park, Theoretical stress-strain model for confined concrete. Journal of structural engineering, 1988. 114(8): p. 1804-1826.
36.         Kent, D.C. and R. Park, Flexural members with confined concrete. Journal of the Structural Division, 1971. 97(7): p. 1969-1990.
37.         Chen, J. and J. Teng, Anchorage strength models for FRP and steel plates bonded to concrete. Journal of Structural Engineering, 2001. 127(7): p. 784-791.
38.         Sayed-Ahmed, E., R. Bakay, and N. Shrive, Bond strength of FRP laminates to concrete: state-of-the-art review. Electronic Journal of Structural Engineering, 2009. 9: p. 45-61.
39.         Mazzoni, S. and J.P. Moehle, Seismic response of beam-column joints in double-deck reinforced concrete bridge frames. ACI Structural Journal, 2001. 98(3).
40.         ACI Standard 318, Building Code Requirements for Structural Concrete (ACI 318-11). 2011, American Concrete Institut..
41.         Ghobarah, A. and A. Said, Shear strengthening of beam-column joints. Engineering Structures, 2002. 24(7): p. 881-888.
42.         Ilki, A., I. Bedirhanoglu and N. Kumbasar (2010). "Behavior of FRP-retrofitted joints built with plain bars and low-strength concrete." Journal of Composites for Construction 15(3): 312-326.