کنترل ارتعاشات پل کالج با استفاده از میراگرهای جرمی تنظیم‌شونده

نویسندگان
دانشکده مهندسی عمران، دانشگاه تهران
چکیده
یکی از شیوه‌های معمول کنترل غیرفعال سازه‌ها تحت اثر زمین لرزه‌ بهره‌گیری از سیستم میراگرهای جرمی تنظیم‌شونده است. ساختار این میراگرها متشکل از سه پارامتر اصلی یعنی جرم، میرایی و سختی می‌باشد. میراگرهای جرمی تنظیم‌شونده غالباً با اثرگذاری روی یک مود، که معمولاً مود اول سازه است، سبب کاهش دامنه پاسخ‌ها می‌گردند. از آنجا که پارامترهای میراگرهای جرمی تنظیم‌شونده در زمان ارتعاش ثابت می‌باشند، تنظیم صحیح و بهینه آنها بسیار حائز اهمیت است. یافتن مقادیر بهینه پارامترهای میراگر جرمی چندگانه برای سازه‌های غیرخطی با استفاده از روش‌های عددی مستلزم انجام آنالیزهای دینامیکی غیرخطی متعددی می‌باشد؛ در نتیجه حجم محاسبات لازم بسیار زیاد می‌باشد. در این تحقیق سازه پل فلزی کالج در نرم‌افزار اجزاء محدود OpenSees مدل‌سازی شده است و برای کاهش حجم محاسبات به‌ منظور یافتن مقادیر بهینه پارامترهای میراگرهای جرمی تنظیم‌شونده چندگانه، از الگوریتم ژنتیک با هدف کمینه کردن تغییرمکان طولی بلندترین پایه پل استفاده شده است. نسبت جرمی بهینه میراگرهای تنظیم‌شونده چندگانه به منظور کنترل ارتعاشات پل فلزی کالج برابر 4 درصد جرم سازه پل انتخاب شده است. بر اساس تحلیل‌های عددی انجام‌گرفته برای این نسبت جرمی، میزان تغییرمکان طولی و RMS کاستهشده بلندترین پایه پل توسط میراگرهای جرمی تنظیم‌شونده برای زلزله‌های السنترو، کرن‌کانتی، کوبه و نرثریج به ترتیب برابر 9/24 و 3/34، 5/43 و 7/38، 6/30 و 4/40 و 6/13 و 1/28 درصد می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Vibration control of the College Bridge using tuned mass dampers

نویسندگان English

Akbar Bathaei
Meysam Ramezani
Amir K. Ghorbani-Tanha
School of Civil Engineering, University of Tehran
چکیده English

One of the challenging tasks for civil engineers is to mitigate the response of structures that are subjected to dynamic loads in order to prevent possible damages that may cause human and enormous economic losses.To minimize vibration, reduction of the external disturbance to a system is always preferred, but in many cases, this may not be possible. Modification of the system to avoid resonance may entail significant redesign. Furthermore, it would be difficult to be applied to existing structures. Thus, vibration control devices, which can be simply attached to the existing system to reduce the vibration without drastically altering the original system, have been developed. Passive tuned mass damper (TMD), whose concept was presented more than a century ago, is undoubtedly a simple, inexpensive and reliable means to suppress unfavorable vibrations of structures but the very narrow band of suppression frequency, the ineffective reduction of non-stationary vibration, and the sensitivity problem due to detuning are the inherent limitations of the passive TMDs. TMDs are usually tuned to the first natural frequency of the structures. Since TMD parameters are constant during the life cycle of the structure, it is important to adjust them properly to achieve a favorable performance. Optimal values of TMD parameters for structures with non-linear behavior require non-linear dynamic analyses. There are many analytical and empirical relations to identify these parameters obtained by structure simplification and loading. In this paper, genetic algorithm (GA) is employed to find optimum TMD parameters for vibration control of the College Bridge in Tehran. With the length of 372 m, this steel bridge has 14 spans. The bridge is modeled in OpenSees environment. Verification of the finite element modelling is performed by comparing the results of the dynamic analyses under four earthquake records by those of another model created in SAP2000 software. In order to mitigate its vibrations, 11 TMDs are considered to be installed on the bridge. The aim of GA is to minimize the displacement of the tallest pier of the bridge in order to decrease the maximum displacement of the structure subject to earthquake excitations. Based on the analyses conducted for near-field and far-field earthquakes, it was concluded that employing GA considerably reduces convergence rate to achieve optimum TMD parameters. To evaluate the performance of a control system during severe earthquakes, incremental dynamic analyses (IDA) for maximum peak ground accelaration (PGA) of 0.1g to 1.0g was conducted. The longitudinal root mean square and maximum displacement of the tallest pier in uncontrolled and controlled cases are obtained and compared. The results of IDA analyses show that for low PGA values, TMDs by themselves absorb and dissipate a large portion of the input energy because in this case the piers remain elastic. However, for higher values of PGA, piers also dissipate some portion of input energy by entering nonlinear region. The percentage of response reduction for different earthquakes are not the same because each earthquake has its own frequency content. According to the numerical analyses for the mass ratio as 4%, the longitudinal displacement and reduced RMS displacement of the largest pier of bridge by tuned mass damper for El-Centro, Kern-County, Kobe and Northridge earthquakes are 24.9 and 34.3, 43.5 and 38.7, 30.6 and 40.4, 13.6 and 28.1 respectively.

کلیدواژه‌ها English

College bridge
Tuned mass damper
genetic algorithm
Incremental Dynamic Analyses (IDA)
[1]           Frahm, H., Device for damped vibrations of bodies. 1909, US Patent No. 989958.
[2]           Wirsching, P. H., & Yao, J. T. (1973). Safety design concepts for seismic structures. Computers & structures, 3(4), 809-826.
[3]           Mashkat Razavi, H., Intelligent algorithms in structural control with tuned mass dampers considering soil-structure interaction, PhD Dissertation, University of Mashhad, December, 2014 (In Persian).
 
 
[4]           Kareem, A., & Kline, S. (1995). Performance of multiple mass dampers under random loading. Journal of structural engineering, 121(2), 348-361.
[5]           Yamaguchi, H., & Harnpornchai, N. (1993). Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations. Earthquake engineering & structural dynamics, 22(1), 51-62.
[6]           Abe, M., & Fujino, Y. (1994). Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthquake engineering & structural dynamics, 23(8), 813-835.
[7]           Jangid, R. S. (1999). Optimum multiple tuned mass dampers for base‐excited undamped system. Earthquake engineering & structural dynamics, 28(9), 1041-1049.
[8]           Chen, G., & Wu, J. (2001). Optimal placement of multiple tune mass dampers for seismic structures. Journal of structural engineering, 127(9), 1054-1062.
[9]           Zuo, L., & Nayfeh, S. A. (2005). Optimization of the individual stiffness and damping parameters in multiple-tuned-mass-damper systems. Journal of vibration and acoustics, 127(1), 77-83.
[10]         Jefferson, M. F., Pendleton, N., Lucas, S. B., & Horan, M. A. (1997). Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with nonsmall cell lung carcinoma. Cancer, 79(7), 1338-1342.
[11]         Michalewicz, Z. (1996).  Genetic algorithms + data Structures = evolution programs (pp.1-10). Springer, Berlin Heidelberg.
[12]         Hadi, M. N. & Arfiadi, Y. Optimum design of absorber for MDOF structures. Journal of structural engineering, 1998. 124(11), 1272-1280.
[13]         Mohebbi, M., &  Joghataie, A. (2012). Designing optimal tuned mass dampers for nonlinearframes by distributed genetic algorithms. The structural design of tall and special buildings, 21(1), 57-76.
[14]         Ansari, P. Experimental and analytical studies on traffic induced vibrations of steel bridges and feasibility study of applying tuned mass dampers, M.Sc Thesis, K.N.Toosi University of Technology, November, 2010 (In Persian).