بررسی عددی اثر تراکم خاک و عمق ترانشه مانع مقاوم بر کاهش ارتعاشات ناشی از حرکت قطار

نویسندگان
1 استادیار/دانشگاه بین المللی امام خمینی (ره) (قزوین)
2 کارشناسی ارشد مهندسی عمران-ژئوتکنیک/ دانشگاه بین المللی امام خمینی (ره)
چکیده
در این تحقیق به مدلسازی جداسازهای ژئوتکنیکی به منظور کاهش ارتعاشات ناشی از حرکت قطار پرداخته می شود. بدین منظور با درنظر گرفتن وزن و فواصل چرخ ها، تابع بارگذاری برحسب زمان تعیین گردیده، با محاسبه طیف فوریه و تعیین محدوده فرکانسی مدنظر، تابع بار-زمان ناشی از حرکت قطار مشخص می گردد. سپس با مدل سازی اجزا محدود سیستم متشکل از ریل، قطار، تراورس، بالاست و زیر بالاست و لایه خاکی، به تحلیل انتشار موج ناشی از حرکت قطار و بررسی کاهش آن به روش ترانشه مانع پرداخته شده است. بدین منظور با بررسی تغییر شکل ها، سرعت ذره و محتوای فرکانسی ارتعاشات در نقاط مورد نظر برای سه نوع خاک دانه‌ای با تراکم مختلف، اثر ترانشه مانع مورد توجه قرار گرفت. نتایج تحقیق نشان می دهد با افزایش عمق ترانشه، دامنه ازتعاشات بیشتر کاهش می یابد و باعث کاهش دامنه فرکانس غالب موج لرزش می شود. همچنین با افزایش عمق ترانشه، از مقادیر پارامتر نسبت کاهش دامنه(Arr) کاسته شد که نشاندهنده بهبود عملکرد ترانشه است. از طرفی با تغییر تراکم خاک بستر مشخص شد که این عامل تاثیر محسوسی بر راندمان ترانشه ندارد اما باعث تغییر محتوای فرکانسی ارتعاشات می شود. بطوریکه در خاک سست تر، دامنه حداکثر، در فرکانس های کمتری رخ می‌دهد. در این تحقیق رابطه عمق ترانشه و نسبت کاهش دامنه، بصورت یک تابع درجه دوم ارائه شد. حداقل عمق ترانشه بایستی به نحوی انتخاب شود که کاهش ایجاد شده، به مقدار قابل توجهی بیشتر از کاهش ناشی از میرایی هندسی و مصالح باشد.

کلیدواژه‌ها


عنوان مقاله English

Numerical study of soil compaction and the passive trench barrier depth on vibration reduction due to train movement

نویسندگان English

Alireza Ardakani 1
Ebrahim Saadatfar 2
چکیده English

Vibration due to train movement has been concerned since the advent of rail transportation systems. Nowadays this subject is more important by increasing the speed of trains and wagon weight and development rail way in urban area. Different methods and techniques have been proposed to reduce these vibrations by researchers. In this study, geotechnical modeling of trench barrier isolators to reduce train vibrations are investigated by numerical modeling. Trench barrier according to location are divided into two categories: active and passive. Active trench is located near the source load but passive trench is located near the structure that needs protections. The main focus of this research is the effects of trench depth on efficiency of passive trench barrier. In advance by considering the wagon weight and distance between the wheels, the load in terms of time domain by calculating Fourier spectra and considered effective frequency range, the load-time function is determined. Then, a series of nonlinear finite-element analyses were carried out to study effect of trench depth. The depths of trench are considered 0 to eight meters in analysis. Viscous damping was considered by means of Rayleigh methods. The coefficient of mass and stiffness matrices are defined by modal analysis. Then, modeling of rail, sleeper, ballast, sub-ballast and soil layers is conducted to analyze wave vibration propagation due to train movement and evaluation of amplitude reduction due to trench barrier. Mohr Coulomb failure criterion is supposed for soil, ballast and sub-ballast layer and a linear elastic behavior was assumed for sleeper. Infinite element boundaries were used at the lateral sides of the finite element mesh for prevention of wave reflection. The dynamic response analysis was based on input time historical wagon load which determined in previous section applied at the sleeper.Thereby the studying of deformations and displacement and particle velocity of the elements of the model, the effects of the trench barrier on before and after trench, are considered. Results indicate that increase in trench depth is effective on vibration reduction. This means that by increasing the depth of the trench, amplitude of deformation becomes more reduced. It also increases the depth of the trench, reduces the dominant wave frequency vibrations. On the other hand, by increasing the depth of the trench, amplitude reduction ratio has a significant decreasing that means increase efficiency trenches. The relationship between depth and amplitude reduction ratio (Arr) was introduced as a quadratic function. For validation of modeling, theory equation of amplitude decreasing is compared with numerical modeling. The result showed that there is a good accordance between numerical model and theory equation at different distance.The minimum depth of the trench should be selected based on different parameters. To define depth of trench should be note that the reduction due to trench should be significantly greater than the decreasing wave amplitude due geometric and material damping. Reducing the required to mitigate the potential damage of protected structures and economic and implementation considerations are important factor in determination of final depth of the trench barrier isolator.

کلیدواژه‌ها English

Load-time function
Vibration
Train movement
Trench barrier
Depth
[1]                    ISO 14837-1 (2005) “mechanical vibration Ground borne noise and vibration arising from rail system”, part1: General guidance .
[2]                    Ungless, RF. (1973) “An infinite element”, M. A. Sc.  Dissertation, Columbia, University of British.
[3]                    Bettess, P. (1977) “Infinite elements”, International Journal for Numerical Methods in Engineering., Vol. 11, pp. 53–64.
[4]                    Dominguez, J., Roesset, JM. (1978) “Dynamic stiffness of rectangular foundations”,Research report R78-20 Department of Civil Engineering, MIT.
[5]                    Krylov, VV., Ferguson, CC.  (1995) “Recent progress in the theory of railway generated ground vibrations”,  Proc. Inst. Acoustic, Vol. 17, pp. 55–68.
[6]                    Barber, JR. (1996) “Surface displacements due to a steadily moving point force”, Journal of Applied Mechanics, Vol. 63, pp. 45–51.
[7]                    Celebi, E., Kirtel, O. (2013) “Non-linear 2-D FE modeling for prediction of screening performance of thin-walled trench barriers in mitigation of train-induced ground vibrations”, Engineering Structures, pp. 122–131.
[8]                    Woods, R. D., (1967) “Screening of surface waves by trenches”, PhD dissertation Univ. of Michigan.
[9]                    Garg, V. K. and Vukkipati, R. V. (1984) “Dynamics of Railway Vehicle Systems”, Academic Press.
[10]                 Lars, H.  (2003) “Simulations and Analyses of Train-Induced Ground Vibrations in Finite Element Models”, Soil Dynamics and Earthquake Engineering, Vol. 23, p.p. 403–413.
[11]                 Nejati, H., Ahmadi, M. (2012) “Numerical analysis of ground surface vibration induced by underground train movement”, Tunneling and Underground Space Technology, Vol. 29, pp.1-9.
[12]                 Glyn, James. (2004) “Advanced Modern Engineering Mathematics”, (3th Edition), ISBN 0-130-39-218-9, UK, Pearson press.
[13]                 Oppenheim, Alan V.,Willsky, Alan S. (1996), “Signals and Systems”, (2nd Edition), ISBN-10, USA, Pearson press.
[14]                 Mir Mohammad Sadegi, (2008) “Principles of analysis and design of railway ballast lines”, (3th Edition), ISBN 964-454-185-5, Iran, Iran University of Science and Technology press.(In persian)
[15]                 Kuhlmeyer R L, Lysmer J. (1973) "Finite element method accuracy for wave propagation problems", Journal of the Soil Mechanics and Foundations Division, 99(SM5): 421–427
[16]                 Chopra, A. K., (1995), “Dynamics of Structure”, First Edit., New Jersy, Prentice hall.
[17]                 Connolly, A.,  Giannopoulos, W.,  Fan, P. K.,  Woodward M. C.,  Forde, R. (2013) “Optimizing low acoustic impedance back-fill material wave barrier dimensions to shield structures from ground borne high speed rail vibrations”, Construction and Building Materials, Vol. 44, pp. 557–564.  
[18]                 Shrivastavaa, K.,  Kameswara, Rao (2002) “Response of soil media due to impulse loads and isolation using trenches”, Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 695–702.
[19]                 Woods & Richard (1997) “Dynamic effects of pile installations on adjacent structures”, Washington: NCHRP_syn_253.
[20]                 Chiang, C. Tsai, P. (2014) “A Numerical Study of the Screening Effectiveness of Open Trenches for High-Speed Train-Induced Vibration” shock and vibration.