پیش‌بینی بزرگای زلزله با استفاده از شبکه عصبی پرسپترون چندلایه

نویسندگان
1 استادیار / دانشگاه تربیت دبیر شهید رجایی
2 دانشجوی دوره کارشناسی ارشد / دانشگاه صنعتی خواجه نصیرالدین طوسی
3 دانشجوی دوره کارشناسی ارشد / مرکز تحقیقات ساختمان و مسکن
4 دانشجوی دوره کارشناسی ارشد / دانشگاه خوارزمی
چکیده
به دلیل نواقص موجود در روش های پیشین محاسبه بزرگای زلزله، شبکه عصبی به عنوان یک روش جدید برای این منظور آزمایش می‌گردد. در این مقاله نوعی شبکه عصبی با نام پرسپترون چندلایه برای پیش بینی بزرگای گشتاوری زلزله مورد استفاده قرار گرفته است. شبکه عصبی پرسپترون شامل سه لایه اصلی با نام های لایه ورودی، لایه پنهان و لایه خروجی است. ورودی های این شبکه شش متغیر مربوط به مکان و زمان وقوع زلزله و همچنین مشخصات گسل تولید کننده زلزله می باشد و خروجی آن همان بزرگای زلزله است. از آن جا که بهترین تنظیمات شبکه همچون بهترین تعداد گره های لایه پنهان و مناسب ترین شیوه آموزشی شبکه از پیش قابل تعیین نیستند و همچنین امکان یادگیری زائد در تکرارهای بعدی ممکن است، در این پژوهش 32 مدل از شبکه با تنظیمات مختلف به کار گرفته شده است تا بهترین مدل شناسایی شود. با توجه به نتایج حاصل از شبکه و مقایسه نتایج با مقادیر حقیقی، مشخص می گردد که شبکه عصبی پرسپترون چند لایه توانایی بالایی در پیش بینی بزرگای زلزله دارد و گزینه بسیار مناسبی برای این منظور است.

کلیدواژه‌ها


عنوان مقاله English

The Earthquake Magnitude Prediction Using Multilayer Perceptron Neural Network

نویسندگان English

Mohammad Ali Arjomand 1
Jamal Mahmoudi 2
Masoud Rezaei 3
Mohammad Hossein Mohammadi 4
1 Assistant Professor / Shahid Rajaee Teacher Training University
2 M.Sc. of Earthquake Engineering/K.N.Toosi university of technology
3 M.Sc. Student of Earthquake Engineering / Building and Housing Research Center
4 M.Sc. Student / Kharazmi University
چکیده English

Theoretical and empirical equations developed for calculating the magnitude of earthquakes are affected by a lot of parameters. Most of these parameters need to be measured and entered in the equations accurately, while, in many areas, due to the lack of required equipment, these parameters mostly are measured approximately and with low precision or even sometimes assumed. Moreover, these equations usually are exclusive of a specific region or state, so they are not reliable enough for other new regions.
On the other hand, neural networks have been proven to be one of the most practical effects in modelling and forecasting. There are three major advantages of neural networks. First, neural networks are able to learn any complex non-linear mapping. Second, they do not make a priori assumption about the distribution of data. Third, they are very flexible with respect to incomplete, missing and noise data (Vellido et al, 1999). Moreover, neural networks, regardless of the region and country, are a general solution in all areas.
The aim of this paper is to use a kind of neural network system named Multilayer Perceptron (MLP), which is one of the most influential neural network models, to predict the magnitude of the earthquakes.
This method consists of several layers of nodes. It includes an input layer, an output layer, and a hidden layer, each of which contain input node(s), output node(s), and hidden node(s), respectively.
The input nodes are based on some variables. In the current research, six independent variables including three spatial variables, one time variable and two variable related to physical characteristics are defined. The output nodes of neural networks are the prediction outputs or labels.
The seismic data that have been used in the research are got from the whole instrumentally recorded earthquakes occurred in Iran.
From whole data, 85% are used for network training and 10% for network testing and revising. The remained 5% is dedicated to derive the final prediction of the magnitudes of earthquakes. Then, these predictions have been compared with exact values to assess the network prediction ability.
In the hidden layer, as there is no method to decide the optimal number of hidden nodes directly, four different numbers of hidden nodes are chosen, including 8, 12, 16 and 20. Moreover, a well-known concern with neural networks is ‘‘overtraining”. To ease this problem, a set of four different learning epochs are used, including 1, 2, 4 and 8. Moreover, in training part, two different training methods, named Batch and Online, were applicable. In order to reach to more comprehensive results, both of these methods are applied. As a result, we setup 32 different groups of parameters and models.
After all, the results of the study indicate that MLP network has a good capability for predicting the magnitude of earthquakes. The average correct prediction of the models is about 70%.
To conclude, according to the results, the network is a functional device in predicting the magnitude of the earthquake of a region in an arbitrarily considered time.

کلیدواژه‌ها English

Multilayer Perceptron
Neural Network
Earthquake Magnitude
Prediction
Training Method
[1]                 Vellido A, Lisboa P J G & Vaughan J (1999) Neural Networks in Business: A Survey of Applications (1992–1998), Expert Systems with Applications, 17: 51–70
[2]                  Yau W C, Kumar D K, Arjunan S P (2007) Visual recognition of speech consonants using facial movement features, Integrated Computer-Aided Engineering, 14(1): 49-61
[3]                  Cichocki A, Zdunek R (2007) Multilayer nonnegative matrix factorization using projected gradient approaches, International Journal of Neural Systems, 17(6): 431-446
[4]                 Adeli H, Ghosh Dastidar, S, Dadmehr N (2008) a spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease, Neuro- science Letters, 444(2): 190-194.
[5]                  Senouci A B, Adeli, H. (2001) Resource scheduling using neural dynamics model of Adeli and Park, Journal of Construction Engineering and Management, ASCE, 127(1): 8-34
[6]                 Cyganek B (2008) Color image segmentation with support vector machines: Applications to road signs detection, International Journal of Neural Systems, 18(4): 339_345
[7]                 Kimura T, Ikeguchi T (2007) an optimum strategy for dynamic and stochastic packet routing problems by chaotic neurodynamics, Integrated Computer-Aided Engineering, 14(4): 307-322
[8]                  Chih Fong T, Yen Jiun Ch (2009) Earnings Management Prediction: A Pilot Study of Combining Neural Networks and Decision Trees, Journal of Expert Systems with Applications, 36: 7183–7191
[9]                 SPSS Neural Networks 17.0 manual
[10]             International Institute of Earthquake Engineering and Seismology (IIEES) ground motion data base
[11]             Gardner, J. K., and L. Knopof (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bulletin of the Seismological Society of America, 64(5): 1363-1367
[12]             Reasenberg, P (1985) Second-order moment of central California seismicity, Journal of Geophysical Research, 90 : 5479-5495
[13]             Uhrhammer, R. (1986), Characteristics of Northern and Central California Seismicity, Earthquake Notes, 57(1): 21
[14]             Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800) 3rd edition