کاربرد تحلیلی تئوری حداکثر ظرفیت انتقال رسوب در تعیین روابط هندسه هیدرولیکی رودخانه‌ها

نویسندگان
پردیس فنی مهندسی شهید عباسپور- دانشگاه شهید بهشتی
چکیده
حفظ و نگه‌داری رودخانه‌ها در حالت تعادل (رژیم) از اهمیت بالایی برخوردار بوده و تعیین هندسه هیدرولیکی پایدار در رودخانه‌ها، از مهم‌ترین مواردی است که طراحی و ساماندهی رودخانه براساس آن پایه‌گذاری می‌شود. در این تحقیق، مدل تحلیلی برای ارزیابی شرایط پایدار (پایداری دینامیکی و استاتیکی) پیشنهاد شده و روابط هندسه هیدرولیکی تک‌متغیره و دومتغیره قابل کاربرد در رودخانه‌هایی که بار بستر بر مورفولوژی آنها نقش مهمی ایفا می‌کند، از آن استخراج شده است. برای این منظور با استفاده از مدل تحلیلی، سیستمی از معادلات بدون درج قید پایداری کناره (مدل محدود‌نشده) حل گردیده است. در این راستا، به‌علت کافی نبودن معادلات موردنیاز برای توضیح پدیده تعادل و حل سیستم مذکور، از تئوری‌های حدی استفاده شده که براساس این تئوری‌ها، رفتار رودخانه در جهت بهینه‌سازی پارامتر مورفولوژیک خاصی توجیه می‌شود. مقایسه توان‌های هندسه هیدرولیکی توسعه‌یافته در این تحقیق با توان‌های هندسه هیدرولیکی تجربی و تحلیلی، همخوانی مناسبی را نشان می‌دهد که این امر بیانگر مکانیزم خود‌تنظیمی کانال‌های آبرفتی با معرفی فاکتور شکل کانال (نسبت عرض کف به عمق) و گنجاندن فرضیه حدی به روابط حاکم بر جریان (پیوستگی، مقاومت جریان و انتقال رسوب) می‌باشد. در انتها مدل تخمین ابعاد مقطع پایدار با داده‌های صحرایی کشور انگلستان مورد واسنجی قرار گرفته و به‌طور متوسط خطای نسبی محاسبه عرض و عمق مقطع پر به‌ترتیب 47% و 35% به‌دست آمده است.

کلیدواژه‌ها


عنوان مقاله English

Analytical application of maximum sediment transport capacity to determine hydraulic geometry relationships in gravel bed rivers

نویسندگان English

mahsa mahmoodi
Mohammad Reza majdzade tabatabai
Saeed Mousavi nadushani
Shahid Beheshti University
چکیده English

Development of erosion and sedimentation processes due to human activities or natural changes will threaten the stability of the rivers and cause hydraulic and morphological changes. Continuous changes will result in a lot of damages including damage to structures constructed in the rivers. Therefore, preserving the rivers in the equilibrium (regime) state is of great importance. In other words, determination of the stable hydraulic geometry of the rivers is one of the most important cases on which the design, planning, management and training of the river are founded. Two basic approaches have been used to predict the hydraulic geometry of gravel-bed rivers: (1) Those based on empirical regime equations; and (2) those based on the simultaneous solution of the equations governing channel flow. Currently there are considerable restrictions with the use of both methods for channel design purposes. Existing experimental hydraulic geometry relationships have been obtained for particular field conditions and based on limited data, and can be used only under the same conditions. Equally theoretical methods are applicable only to straight or fixed width and with static stability channels, due to our lack of knowledge regarding the mechanisms controlling width adjustment and meander development, a large number of theories have been developed in this regard that the basic assumptions of all include a steady and uniform flow as well as stream changes toward the equilibrium state and the main difference between these theories is the hydraulic mechanisms employed by the models to describe how the stream reaches the equilibrium state. In this Paper, an analytical model for assessing the stable condition (static and dynamic stability) and predicting river response to the applied changes (such as hydraulic changes) was proposed and univariate and bivariate hydraulic geometry relationships to be applicable in the rivers with dominant bed load, were derived. For this purpose, after reviewing the previous researches in this field, the principles and concepts of the regime and hydraulic geometry were presented. In the next step, by using the analytical model, a system of equations was solved without including bank stability constraint (unconstrained model). Due to lack of required equations to solve the system, extremal hypotheses were used. According to these theories, the river behavior is justified in order to optimize a specific morphologic parameter. a good agreement was observed between the developed exponents of hydraulic geometry relationships in this paper and the results of the empirical and analytical hydraulic geometry relationships. This represents the self-adjusting mechanism of alluvial channels by introducing the channel shape factor (bed width/depth ratio) and the inclusion of extremal hypotheses in the flow governing equations (continuity, flow resistance and sediment transport equations). Finally, developed model were calibrated using the field data of the United Kingdom and the mean relative error of the bankfull width and depth calculation is obtained 47% and 35%, respectively. obtained results confirmed the efficiency of the proposed model. Development of erosion and sedimentation processes due to human activities or natural changes will threaten the stability of the rivers and cause changes

کلیدواژه‌ها English

Equilibrium
hydraulic geometry
extremal hypotheses
[1] Hey, R. D., “Determinate hydraulic geometry of river channels”, Journal of the Hydraulics Division, ASCE, 104, 1978, 869–885.
[2] کرمی، م.، مجدزاده طباطبایی، م. ر.، "توسعه مدل تحلیلی اثر پوشش گیاهی در تعیین هندسه پایدار رودخانه­های شنی"، نشریه مهندسی عمران و نقشه­برداری- دانشکده فنی، دوره 43، شماره 1، 1388، 105 تا 115.
[3] Lane, E. W., “The design of stable channels”, Trans, ASCE, Vol. 120, No. 2776, 1955b, 1234- 1279.
[4] White, W. R., Bettes, R., Paris, E., “An analytical approach to river regime”, Journal of the Hydraulics Division, ASCE, Vol. 108, No.10, 1982, 1179-1193.
[5] Chang HH., “Stable alluvial canal design”, Journal of the Hydraulics Division, ASCE, 106, 1980a, 873–891.
[6] Huang, H. Q., Nanson, G. C., “Hydraulic geometry and maximum flow efficiency as products of the principle of least action”, Earth Surface Processes and Landforms, 25, 2000,  1–16.
[7] Huang, H. Q. and Nanson, G. C., “a stability criterion inherent in laws governing alluvial channel flow”, Earth Surface Processes and Landforms, Vol. 27, No. 9, 2002, 929-944.
[8] Huang, H. Q., Multivariate controls of alluvial channel geometry: model development and applications, PhD thesis, University of Wollongong, 1996.
[9] Parker, G., “Hydraulic geometry of active gravel rivers”, Journal of the Hydraulics Division, ASCE, 105, 1979, 1185–1201.
[10] Engelund, F. and Skovgaard, O., “On the origin of meandering and braiding in alluvial streams”, Journal of Fluid Mechanics, 57, 1973, 289-302.
 [11] Hey, R. D. and Thorne, C. R., “Stable channels with mobile gravel beds”, Journal of the Hydraulic Engineering, ASCE, Vol. 112, No. 8, 1986, 671- 689.
[12] Darby, S. E., “Refined Hydraulic Geometry Data for British Gravel-Bed Rivers”, Journal of Hydraulic Engineering, 131(1), 2005, 60–64.
[13] Yu, G., Smart, G., “Aspect ratio to maximize sediment transport in rigid bank channels”, Journal of Hydraulic Engineering, Vol. 129, No. 12, 2003, 927-935.
[14] Simons, D. B., Albertson, M. L., “Uniform water conveyance channels in alluvial materials”, Journal of the Hydraulics Division, ASCE, 86, 1960,  33–71.
[15] Manning, R., “On the flow of water in open channels and pipes”, Transactions of the Institution of Civil Engineers of Ireland, 20, 1891, 161-207.
[16] DuBoys, P., Le Rhone et les rivieres a lit affouillable, Annales des Ponts et Chaussees, Series 5, 18, 1879, 141–195.
[17] Meyer-Peter, E., Muller, R., “Formulas for bed load transport”, In Proceedings of the 3rd Meeting of IAHR Stockholm, 1948,  39–46.
[18] Van Rijn, L. C., “Sediment Transport, Part I-Bed Load Transport”. Journal of the Hydraulic Engineering, ASCE,110, 10, 1984, 1431–1456.
[19] Nelson, J. M., Mechanics of flow and sediment transport over nonuniform erodible beds, Ph.D. dissertation, University of Washington, Geophysics Program, 1988.
[20] Huang, H. Q., “Reformulation of the bed load equation of Meyer-Peter and Müller in light of the linearity theory for alluvial channel flow”, Water Resources Research, Vol. 46, No. 9, 2010, 1-11.
[21] Bray, D.I., ‘Regime equations for gravel-bed rivers”, In Hey, R. D., Bathurst, J. C. and Thorne. C. R., (Editors): Gravel-bed Rivers: Fluvial Processes, Engineering and Management, John Wiley and Sons, Chichester, 1982b, 517- 552.
[22] Lacey, G., “Stable channels in alluvium”, Proceedings of the Institution of Civil Engineers, London, 229, 1929-1930, 259–292.
[23] Julien, P. Y., Wargadalam, J., “Alluvial channel geometry: theory and applications”, Journal of Hydraulic Engineering, ASCE, 121, 1995, 312–325.