استخراج پروتکل بارگذاری چرخه ای دوگانه متناسب با تقاضاهای لرزه ای در ستون های قاب های خمشی و ارزیابی رفتار چرخه ای این اعضا

نویسندگان
1 دانشگاه صنعتی امیرکبیر
2 استادیار، دانشگاه صنعتی امیرکبیر
چکیده
وقوع یک رخداد لرزه ای موجب ایجاد همزمان دو اثر نیروی محوری و لنگر خمشی در ستون های یک قاب خمشی می گردد. بررسی ماهیت و بزرگای این آثار در این اعضا هدف اولیه این تحقیق خواهد بود. نکته غیر قابل اغماض در این میان، اثر توأم این دو تقاضای لرزه ای و نیز ماهیت ارتعاشی آنها می باشد. با در نظر داشتن این واقعیت، در گام نخست حدود کمی نیروی محوری و دوران تحمیل شده به ستون ها در حین رخدادهای لرزه ای بررسی شده است. به این منظور قاب های خمشی نمونه تحت رکوردهای لرزه ای با شدت های جداگانه «طراحی» و «بیشینه لرزه مورد انتظار» تحلیل گشته اند. سپس تاریخچه زمانی نیروی محوری و جابه جایی جانبی نسبی (دوران) ایجاد شده در ستونها با استفاده از روشهای آماری مورد مطالعه قرار گرفته است. با استفاده از حدود تقاضاهای لرزه ای مورد اشاره و با توجه به ماهیت ارتعاشی آنها، پروتکلهای دوگانه بارگذاری چرخه ای برای هر دو شدت لرزه ای یاد شده معرفی خواهند شد. درگام دوم، به اهمیت ماهیت ارتعاشی آثار محوری شکل گرفته در ستونها حین یک رخداد لرزه-ای پرداخته خواهد شد. نخست مدلهای اجزای محدود از تعدادی از ستونهای متداول در قابهای خمشی ساخته می شوند. پس از آن، ستونهای مدلسازی شده تحت دو روند اعمال بار خارجی تحلیل می گردند. یکبار، اعمال بارگذاری با استفاده از پروتکل دوگانه پیشنهادی خواهد بود و بار دیگر همان ستون ها تحت بار محوری ثابت همراه با بارگذاری جانبی چرخه ای تحلیل می گردند..

کلیدواژه‌ها


عنوان مقاله English

Developing cyclic Dual Loading Protocols for the Columns of Moment Frames Based on Their Seismic Demands, and Evaluation of Their Cyclic Behavior

نویسندگان English

MOJTABA FARAHI 1
Saeed Erfani 2
1 Amirkabir University of Technology
2 Professor Assistant, Amirkabir University of Technology
چکیده English

The column members of moment frames are subjected to high axial forces as well as inelastic rotations during a seismic event. Estimating the boundaries of these simultaneous structural demands on the columns of special moment frames are one the aims of this research. These demands were evaluated in this research by performing a vast number of non-linear time history analyses on some archetype frames. Totally, eight archetype buildings were designed under two levels of spectral accelerations represent the Maximum Credible Earthquake (MCE) and the Design Earthquake (DE). Both geometric and material nonlinearities were taken into account. Far-field earthquake record set proposed by FEMA P696 was utilized in this study to conduct the required time history analyses. This set includes 44 individual seismic records with different magnitudes and other specifications. Each sample SMF was excited by each of the individual records with two different intensity levels referring to DE and MCE respectively. After performing numerous time history analyses, the boundaries and the characteristics of the axial force and the story drift ratio demands on columns were fairly stablished for the seismic events with MCE and DE intensity levels. It was proved that they might experience the axial force around 0.3 of their yielding capacity as well as the drift ratios up to 0.06. Moreover, based on the results of these analyses, a representative loading protocol was also developed for the column members of special moment frames because the effect of simultaneous change of the axial force demand on columns along with the change of plastic rotation in these members was neglected in all of introduced loading framework for these members. On the other hand, the utilized loading frameworks in different research studies were introduced quite arbitrarily and with no root in the real seismic demands of these structural members. Hence, a statistical approach implemented to extract the loading cycles based on the results of the mentioned non-linear time histories. This loading protocol includes cycles of varied axial force ratios as well as simultaneous cycles of lateral loading. Providing such a loading regime can pave the way to investigate the behavior of the columns of moment frames using more sophisticated numerical models that cannot be ordinarily employed to perform time history analyses under seismic records due to excessive computational costs. The overall response of steel columns may be dominantly affected by the local effects like as local bucking at large deflections. Hence, the response of some archetype individual columns was fairly investigated under the proposed loading protocol by utilizing continuum finite element simulations which are expected to be able to capture deliberately these kinds of local effects. The investigation not only revealed more on the details of the behavior of these members, but also proved the versatility of the proposed loading protocol in comparison to the previous loading procedures implemented on columns. In order to do so, the numerical models of the archetype columns were also loaded under the proposed lateral loading protocol besides constant levels of axial loading and the results of both cases were compared. It was shown that implementing a constant axial load besides the cyclic lateral cyclic loading may not be an appropriate loading framework and the results would not represent the seismic demands in these members accurately.

کلیدواژه‌ها English

Seismic Demands
Cyclic Loading Protocol
Column Members
Special Moment Frames
[1] AISC.“Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction.”ANSI/AISC 341-05, (2002), Chicago.
[2] Kurata, M., Nakashima, M., and Suita, K..“Effect of Column Base Behavior on the Seismic Response of Steel Moment Frames.”J. Of Earthquake Engineering, 9(2) (2005) 415-438.
[3] Nakashima, M., Liu, D. “Instability and Complete Failure of Steel Columns Subjected to Cyclic Loading.” J. of Eng. Mech., 131 (2005), 559-567.
[4] Xiao, Y., Li, H., and Zhou, T. “Seismic behavior of wide-flange steel column with confined potential plastic hinge."J. of Constructional Steel Research, 65 (2009) 808-817.
[5] Cheng, X., Chen, Y., Nethercot, D. A.“Experimental study on H-shaped steel beam-columns with large width-thickness ratios under cyclic bending about weak-axis.”J. of Eng. Structures, 49 (2013) 264-274.
[6] Krawinkler, H., Gupta, A., Medina, R., and Luco, N.“Loading histories for seismic performance testing of SMRF components and assemblies.” Rep. SAC/BD-00/10  (2000), SAC Joint Venture, Sacramento, Calif.
[7] Krawinkler, H., Parisi, F., Ibarra, L., Ayoub, A., and Medina, R. “Development of a testing protocol for wood frame structures.”Rep.W-02(2001), CUREE-Caltech Woodframe Project, Stanford Univ., Stanford, Calif.
[8] Richards, P., and Uang, C. M. “Testing protocol for short links in eccentrically braced frames.” J. Struct. Eng., 132(8) (2006), 1183–1191.
[9] Newell, J., and Uang, C. M. “Cyclic behavior of steel wide-flange columns subjected to large drift.” J. Struct. Eng., 134(8) (2008), 1334-1342.
[10] American Society of Civil Engineering (ASCE). “Minimum design loads for buildings and other structures.”ASCE/SEI-10(2010).
[11] AISC. “Specification for structural steel buildings.”ANSI/AISC 360-10, Chicago (2010).
[12] AISC.“Seismic provisions for structural steel buildings.”ANSI/AISC 341-10, Chicago (2010).
[13] Federal Emergency Management Agency (FEMA). “Quantification of building seismic performance factors.” FEMA P695, Washington, DC (2009).
[14] Lignos, D., Krawinkler, H. “Sidesway Collapse of Deteriorating Structural Systems under Seismic Excitation.”Report No. 177, John A. Blume Earthquake Engineering Research Centre, Department of Civil Engineering, Stanford University (2012).
[15] Imani, R. “Post-earthquake fire resistance of ductile concrete filled double-skin tube columns.” Ph.D. thesis, (2014), State Univ. of New York at Buffalo, Buffalo, NY.
[16] Abaqus Analysis User's Guide, Abaqus Software Package. Providence (RI): SIMULIA; )2012(.
[17] Kurata M., “Effects of column base behaviour on the overall response of steel moment frames”, Mater thesis, European School of Advanced Studies in Reduction of Seismic Risk, (2004).