تحلیل عددی عوامل موثر بر روانگرایی ناشی از زلزله بر ساختگاه لوله های مدفون

نویسندگان
1 دانشگاه رازی کرمانشاه
2 دانشگاه آزاد اسلامی واحد اراک
چکیده
چکیده- خاک های ماسه ای اشباع در حین زلزله به دلیل بارگذاری سریع و بدون مهلت زهکشی به دلیل تشکیل اضافه فشار آب حفره ای ممکن است دچار روانگرایی گردند. در اثر وقوع روانگرایی در خاک، نیروهایی به وجود می آید که سازه های مدفون ازجمله لوله ها را تحت تاثیر قرار می دهد. در تحقیق حاضر مدل سازی لوله مدفون در فضای نرم افزار FLAC 2D، صحت سنجی مدل طی فرآیند مقایسه ای با تحقیق آزمایشگاهی انجام گرفته از سوی سازمان ASCE و بررسی پارامترهای مختلف شامل تاثیر زاویه اتساع و اصطکاک خاک، میزان تراکم نسبی خاکریز اطراف و روی لوله، حضور خاک های غیر روانگرا در اطراف لوله مدفون، قطر و عمق دفن لوله و نیز تراز آب زیر زمینی پیرامونی انجام گرفته است. نتایج نشان می دهد که افزایش زاویه اصطکاک و اتساع در تراکم نسبی ثابت از آسیب های وارده بر لوله می کاهد. در تراکم نسبی نسبی بیش از 70% با افزایش زاویه اصطکاک، میزان برخاستگی و تبعاً آسیب پذیری لوله در حین بارگذاری زلزله، همواره سیر نزولی دارد. همچنین دفن لوله در عمق زیاد و نیز استفاده از لوله های با قطر کمتر، میزان آسیب پذیری لوله ها در حین وقوع روانگرایی را به طور چشمگیری کاهش می دهد. از دیگر نتایج این تحقیق، کاهش میزان خطرپذیری لوله های مدفون با استفاده از خاکریزهایی با پتانسیل روانگرایی پایین و نیز پایین انداختن تراز آب زیر زمینی می باشد.

کلیدواژه‌ها


عنوان مقاله English

Numerical analysis of effective parameters on liquefaction occurance result from earthquake on site of buried pipelines

نویسندگان English

Hassan Sharafi 1
Payam Parsafar 2
چکیده English

Abstract: Saturated granular soils are possible liquefied when subjected to earthquake loading. This phenomenon is result from generation of excess water pore pressure because of non enough time to water drainage and govern non- Consolidated Condition. When liquefaction is occurred, many forces are generated and undergrounds structures are affected. In this research numerical analysis on buried pipelines in FLAC 2D software are performed and verified duration a comparative process with experimental result from ASCE organization. In present research surveyed effects of various parameters on liquefaction occurrence and probable damages to buried pipelines as dilatancy and friction angle of soil, relative density of back fill around the pipe, diameter and buried depth of pipe and underground water level. Results indicated that uplift of pipe decrease when dilatancy and friction angle of soil increased in constant relative density condition. This result is different for varied relative density. In low and medium relative density by increasing of dilatancy angle, uplift of pipe increase, reach to pick and decrease. But floating decrease with increasing dilatancy angle for high relative density always. Buried pipe in depth trench and increase of dead load result from back fill on pipeline and usage of pipes with small diameter, decrease uplift the pipe in liquefaction occurrence too. Of course don’t expect perform this subjects in all conditions. for example conflict ion to other underground installation, necessary hydraulic gradient for fluids flow or excavation in region with up underground level, don’t make to excavation of deep conduits. The analysis demonstrate that vertical displacement and damages to pipe is decrease if around installed pipe in conduit back fill with non- liquefied soils. In this new analysis all physical properties of soil and pipe in model are without any change except the cohesion and friction angle of soil around the pipe. Cohesion soils are low potential to liquefaction. For this reason we increase this coefficient from zero to 30 kpa and reach the friction angle to 30 degree. Results are demonstrated in a graph that show uplift versus thickness of non- liquefied soil normalized with diameter of pipe. Final parameter that surveyed in this research is effect of underground water level on floating buried pipeline. Results show decrease of underground water level cause to decrease of floating and damages to pipeline. For this purpose add a new water level to base model and run the analysis. In next steppes the underground water level is lesser and results are show in a graph that explain variation of vertical displacement versus water level normalized by thickness of soil model. This work possible by excavation of drainage shaft and drop down water level nearby the pipeline. Of course, look this work isn’t economical proposal for long transmission pipelines as petroleum or water conveyance. But in limit industrial sites as refineries this proposal is an improvement work to prevent any damage and and continual service of lifelines duration of unpredictable phenomenon. Keywords: Liquefaction, buried pipelines, FLAC, finite difference method, Finn’s model. Liquefaction, buried pipelines, FLAC, finite

کلیدواژه‌ها English

FLAC
Liquefaction
buried pipelines
finite difference method
Finn’s model
[1] Schiff AJ. Northridge earthquake: lifeline performance and post earthquake response.Technical Council on Lifeline Earthquake Engineering ASCE; 1997.
[2] Gi -Chun Kang,Tetsuo Tobita, Susumu Iai. Damage to sewerage systems during t he 2004 Eart hq uake in Niigata-ken Chuetsu, Japan. Engineering Geology 2013;230:242–164.
[3] O’Rourke TD, Gowdy TE, Stewart HE, Pease JW. Lifeline and geotechnical aspects of the 1989 Loma Prieta Earthquake. In: Proceedings of the 2nd international conference on recent advances in geotechnical earthquake engineering and soil dynamics, University of Missouri-Rolla, Rolla, Mo; 1991. p. 1601–12.
[4] Chou HS, Yang CY, Hsieh BJ, Chang SS. A study of liquefaction related damages on shield tunnels. Tunnelling and Underground Space Technology 2001;160:185–93.
 [5] Ling HI, Mohri Y, Kawabata T, Liu H, Burke C, Sun L. Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil. Journal of Geotechnical and Geoenvironmental Engineering ASCE 2003;129(12): 1092–101.
[6] Ling HI, Sun L, Liu H, Mohri Y, Kawabata T. Finite element analysis of pipe buried in saturated soil deposit subject to earthquake loading. Journal of Earthquake and Tsunami 2008;2(1):1–17.
[7] M. Azadi, S.M. Mir Mohammad Hosseini, The Uplifting behavior of shallow tunnels within he liquefiable soils under cyclic loading. Tunnelling and Underground Space Technology 2010;25:158–167.
[8] Reza Saeedzadeh, Nader Hataf,, Uplift response of buried pipelines in saturated sand deposit under earthquake loading. Soil Dynamics and Earthq uake Engineering 2011;31:1378–1384.
 [9] Flac: a finite diffrence program for soil and rock analysis. Manual. Version 7.
[10] Pashangpishe, Y., 2004. Mechanism of Soil Deformation Due to Double Lenses Liquefaction and Critical Depth Determination. M.Sc. Thesis Submitted in Civil Eng., Faculty of Amirkabir University of Technology, Iran.
[11] Arulmoli K, Muraleetharan KK, Hossain MM, Fruth LS. VELACS: verification of liquefaction analyses by centrifuge studies— laboratory testing program. Soil data report. Earth Technology Corporation 1992
 [12] Shantanu Joshi, Amit Prashant, Arghya Deb, Sudhir K. Jain. Analysis of buried pipelines subjected to reverse fault motion. Soil Dynamics and Earthquake Engineering 2011;31:930 –940.
[13] Moser AP. Buried pipe design. 2nd ed. New York: McGraw-Hill; 2001.
[14] Ling HI, Yang S. Unified sand model based on the critical state and generalized plasticity. Journal of Engineering Mechanics ASCE 2006;132(12): 1380–91.