بررسی اثر مواد آلی، کی‌لیت کننده‌ها , سورفکتنت‌ها بر واجذب فنانترن و فلزات سنگین از خاک رسی: مخلوط کائولن، مونتموریلونیت و ماسه

نویسندگان
دانشگاه علم و صنعت ایران
چکیده
درک بهتر اندرکنش‌های ترکیبی مواد آلی خاک (SOM)، سورفکتنت‌ها و کی‌لیت کننده‌ها بر رفتار هیدروکربن‌های آروماتیک چندحلقه‌ای (PAHs) و فلزات سنگین در سیستم آبی-خاکی، برای پیش بینی دقیق‌تر بازدهی سورفکتنت‌ها و کی‌لیت کننده‌ در افزایش بازدهی پاکسازی خاک از این ترکیبات ضروری به‌نظر می‌رسد. در این مقاله اثر میزان مواد آلی خاک و حضور سورفکتنت‌ها و کی‌لیت کننده‌ها بر واجذب PAHs و فلزات سنگین و همچنین اثر حضور و عدم حضور فلزات سنگین بر واجذب PAHs بررسی شد. در حضور تریتون ایکس100 (Trition X 100) و تویین80 (Tween 80) به عنوان سورفکتنت و EDTA به عنوان کی‌لیت کننده در محلول پایه، واجذب PAHs و فلزات سنگین افزایش قابل ملاحظه‌ای نسبت به حالت محلول پایه تنها (M CaCl201/0) داشته است و این در حالی است که تریتون ایکس 100 هم در واجذب PAHs وهم در واجذب فلزات سنگین بهتر از تویین 80 عمل کرده است. همجنین نتایج نشان‌گر این بودند که مواد آلی خاک باعث کاهش واجذب PAHs و فلزات سنگین می‌شود و با افزایش محتوای ماده آلی خاک، واجذب این ترکیبات از خاک کمتر شد. همچنین در این مطالعه مشاهده شد که حضور فلزات سنگین در خاک می‌تواند موجب کاهش واجذب PAHs از خاک شود.

کلیدواژه‌ها


عنوان مقاله English

effect of organic matter, chelatant and surfactants on desorption of phenanthrene and heavy metals from clayey soil: mixture of kaoline, montmorillonite and sand

نویسنده English

milad ayatynia
چکیده English

Understanding the combined effect of soil organic matter (SOM), surfactants and chelatant on the partitioning of polycyclic aromatic compounds and in soil/water systems and on their desorption is important to predict the effectiveness of surfactant-chelatant-enhanced remediation systems. In this paper the effect of soil organic matter’s content and presence of surfactants and a chelatant on desorption of six different polycyclic aromatic hydrocarbons namely acenaphthene , fluorine , phenanthrene , anthracene , fluoranthene , and pyrene was investigated and the results of phenanthrene was reported. It also investigates the effect of coexistence of three differenet heavy metals namely: lead, zinc and nickel on polycyclic aromatic hydrocarbons and their effects on desorption of these compounds. The basic soil was made from a mixture of kaolinite, montmorillonite and sand. Then this basic soil was spiked by two diffrenet level of organic matter through batch experiments to achieve three different soils named S0, S1 and S2 which has 0.33, 1.29 and 2.11 percent organic carbon, respectively. After that, this three different soils was spiked by heavy metals with the same way mentioned before (bathch experiments). As a result, six differenet soils was created under the name of: S0, S0M, S1, S1M, S2, S2M. and finally these six soils were spiked by mentioned polycyclic aromatic hydrocarbons. And finally the whole desorption experiments was done on these mentioned soils. Two surfactants chosen in this paper was triton x 100 and tween 80 and the chelatant was ethylene diamine tetraacitic acid (EDTA). Results showed that, surfactants improved the deorption of both heavy metals and polycyclic aromatic hydrocarbons and it also could be understood that triton x 100 had higher effectiveness than tween 80 in deorption of both heavy metals and polycyclic aromatic hydrocarbons. Furthermore it was found that soil organic matter had preventative effect on desorption of both heavy metals and polycyclic aromatic hydrocarbons. Both soil organic matter and surfactants are amphiphilic substances and because of that it is possible that this result is due to the sorption of surfactants into soil organic matter and consequently caused a reduction in desorption effectiveness of polycyclic aromatic hydrocarbons. and further increase in soil organic matter content caused more reverse effect on surfactants productivity. It was also found that, presence of lead, zinc and nickel could have preventative effect on desorption of polycyclic aromatic hydrocarbons too, and this could be due to some specific interactions like cation л binding between heavy metals and phenanthrene while they coexist in the interface of soil and water. Another reason of heavy metals preventative effect on desorption of polycyclic aromatic hydrocarbons could be due to their indirect effect through which, heavy metals act as an cation bridge between clay particles and organic matter mollecules and by this mean prevent soil organic matter mollecules to be dissolved in water. On the other hand scientists have proved that polycyclic aromatic hydrocarbons have great affinity to partition in to soil organic matter. Therefor by retaining more organic matter in soil through cation bridge mechanism, desorption of phenanthrene was reduced.

کلیدواژه‌ها English

surfactant
chelatant
kaolinite
phenanthrene
heavy metal
[1] Gallego, E. Roca, F.J. Perales, J.F. Guardino, X. Berenguer, M.J. ‘VOCs and PAHs emissions from creosote-treated wood in a field storage area’, Science of Total Environmental, 402, (2008), 130–138.
[2] Chau Thuy, P. Kameda, T. Toriba, A. Hayakawa, K. ‘Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates
emitted by motorcycles’, Environmental Pollution, 183, (2013), 175–183
[3] Bostrom, C.E. Gerde, P.  Hanberg, A. Jernström, B. Johansson, C. Kyrklund, T.  Rannug, A. Törnqvist, M. Victorin, K. Westerholm, R. ‘Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air’, Environmental Health Perspect, 110, (2002), 451.
[4] Zhao, D. Liao, X. Yan, X. Huling, S.G.  Chai, T. Tao, H. ‘Effect and mechanism of persulfate activated by different methods for PAHs removal in soil’, Journal of Hazardous Material, 254, (2013), 228–235.
[5] Zhang, W. Zhuang, L. Yuan, Y. Tong, L. Tsang, D.C.W. ‘Enhancement of phenanthrene adsorption on a clayey soil and clay minerals by coexisting lead or cadmium’, Chemosphere, 83, (2011), 302–310.
[6] Ik Chung, H. Kamon, M. ‘Ultrasonically enhanced electrokinetic remediation for removal of Pb and phenanthrene in contaminated soils’Eng. Geol, 77, (2005), 233–242.
[7] Bamforth, S.M.  Singleton, I. ‘Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions’, Journal of Chemistry Technology and Biotechnology. 80, (2005), 723–736.
[8] Zhang, W.H.  Lo, I.M.C. ‘EDTA-enhanced washing for remediation of Pb- and/or Zn-contaminated soils’, Journal of Environmental Engineering Asce. 132, (2006), 1282–1288.
[9] Cheng, K.Y.  Wong, J.W.C. ‘Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil–water systems’, Environmental Technology, 27, (2006), 835–844.
[10] Alcantara, T. Pazos,  M. Cameselle, C. Sanroman, M.A. ‘Electrochemical remediation of phenanthrene from contaminated kaolinite’, Environmental Geochemistry Health, 30, (2008), 89–94.
[11] Fonseca, B. Pazos, M. Figueiredo, H. Tavares, H. Sanromán,M.A. ‘Desorption kinetics of phenanthrene and lead from historically contaminated soil’,  Chemical Engineering Journal, 167, (2011 ), 84–90
[12] Wang, G. Zhou, Y. Wang, X. Chai, X. Huang, L. Deng, L. ‘Simultaneous removal of phenanthrene and lead from artificially contaminated soils with glycine-β-cyclodextrin’, Journal of Hazardous Materials,184, (2010), 690–695
[13] Ortega-Calvo, J.J.  Tejeda-Agredano, M.C.  Jimenez-Sanchez, C.  Congiu, E.  Sungthong, R. Niqui-Arroyo, J.L.  Cantos, M. ‘Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation?’, Journal of hazardous material, 261, (2013), 733-745.
[14] Gan, S. E. Lau, V. Ng, H.K. ‘Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs), Journal of Hazardous Material, 172, (2009), 532–549.
[15] Mulligan, C.N. Yong, R.N. Gibbs, B.F. ‘ Surfactant-enhanced remediation of contaminated soil: a review’, Eng. Geol, 60, (2001), 371–380.
[16] Yang, X. Lu, G. She, B. Liang, X. Yin, R. Guo, C. Yi, X. Dang, Z. ‘Cosolubilization of 4,40-dibromodiphenyl ether, naphthalene and pyrene mixtures in various surfactant micelles’, Chemical Engineering Journal, 260, (2015), 74–82.
[17] Wan, J. Wang, L. Lu, X. Lin, Y. Zhang, S. ‘Partitioning of hexachlorobenzene in a kaolin/humic acid/surfactant/water system: Combined effect of surfactant and soil organic matter’, Journal of Hazardous Materials, 196, (2011), 79– 85.
[18] Cheng, K.Y. Wong, J.W.C. ‘Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil–water system’, Chemosphere, 62, (2006), 1907–1916.
[19] Lestan, D. Luo, C.l. Li, X.d. ‘The use of chelating agents in the remediation of metal-contaminated soils: a review’, Environmental Pollution, 153, (2008), 3–13.
[20] Cho, H.H. Choi, J. Goltz, M.N. Park, J.W. ‘Combined effect of natural organic
matter and surfactants on the apparent solubility of polycyclic aromatic hydrocarbons’, Journal of Environmental Quality, 21, (2002), 275–280.
[21] Antoniadis, V. Alloway, B.J. ‘The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils’, Environmental pollution, 117, (2002), 515–521.
[22] Mader, B.T. Goss, K.U. & Eisenreich, S.J. ‘Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces’, Environmental Science and Technology, 31, (1997), 1079–1086.
[23] Salloum, M.J.  Dudas, M.J.  Mcgill, W.B.  Murphy, S.M. ‘Surfactant sorption to soil and geologic samples with varying mineralogical and chemical properties’, Environmental Toxicological Chemistry, 19, (2000, 2436–2442.
[24] Ochoa-Loza, F.J. Noordman, W.H. Jannsen, D.B. Brusseau, M.L. Maier, R.M. ‘Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil’, Chemosphere, 66, (2007, 1634–1642.
[25] USEPA, ACID DIGESTION OF SEDIMENTS, SLUDGES, AND SOILS, in 3050B. 1996, SW-864: United States Environmental  Protection  Agency.
[26] USEPA, Soxhlet Extraction in 3540C. 1996, SW-846: United States Environmental  Protection  Agency.
[27] ASTM, Standard Test Method for Laboratory , Determination of Water (Moisture) Content of Soil and Rock by Mass, in D2216-10. 2010, ASTM International: West Conshohocken.
[28] ASTM, Standard Test Method for Laboratory , Determination of Water (Moisture) Content of Soil and Rock by Mass, in D2216-10. 2010, ASTM International: West Conshohocken.
[29] USEPA, Cation Exchange Capacity of Soil (Sodium Acetate), in 9081. 1986, SW-846: United State Environmental Protection Agency.
[30] ASTM, Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils, in D2974-87. 2010, ASTM International: Philadelphia
[31] Saichek, R.E & Reddy, K. R. ‘Evaluation Of Surfactants/Cosolvents For Desorption/Solubilization Of Phenanthrene In Clayey Soils’, International Journal ofEnvironmental Studies, 61(5), (2004), 587-604.
[32] Zhu, D.Q. Herbert, B.E. Schlautman, M.A. Carraway, E.R. and Hur, J. ‘Cation-π bond: a new perspective on the adsorption of PAH to mineral surfaces’, journal of Environmental Quality, 33, (2004), 1322–1330.
[33] Gao, Y. Xiong, W. Ling, W. Xu, J. ‘Sorption of phenanthrene by soils contaminated with heavy metals’, Chemosphere, 65, (2006), 1355–1361.
[34] Liu, H. and Amy, G. ‘Modeling partitioning and transport interactions between natural organic matter and polynuclear aromatic hydrocarbons in groundwater’, Environmental Science and Technology. 27, (1993), 1553–1562.
[35] Puls, R.W. Clark, D.A. Paul, C.J. and Vardy, J. Transport and transformation of hexavalent chromium through soils and into ground water’, Journal of Soil Contamination, 3, (1994), 203-224.
[36] Chen, Y. C. Guo, Y. and Wei, S. P. Removal of Cd and Cr from municipal sludge by complexing of chelators and surfactants’, China Environmental Science(in Chinese), 24(1), (2004), 100-104.
[37] Chen, Y.C. Xiong, Z.T. Dong, S.Y. ‘Chemical Behavior of Cadmium in Purple Soil as Affected by Surfactants and EDTA’, Soil Science Society of China, 16(1), (2006), 91-99.
[38] Reddy, K.J. Wang, L. Gross, S.P. ‘Solubility and mobility of copper, zinc and lead in acidic environments’, Plant and Soil, 171, (1995), 53–58.