مدلسازی فرآیند انعقاد و لخته سازی توسط روش های استنتاج عصبی- فازی تطبیقی، شبکه های عصبی مصنوعی و رگرسیون فازی

نویسندگان
دانشگاه خوارزمی
چکیده
فرایند انعقاد و لخته سازی یکی از فرایندهای اصلی در تصفیه آب است. تاثیر پارامترهای مختلف بر این فرایند همواره یک بحث اساسی در راهبری تصفیه خانه‌های آب بوده و سال‌های مختلف از آزمایش جار برای این منظور استفاده شده است. در این مطالعه از سیستم استنتاج عصبی- فازی تطبیقی (ANFIS)، شبکه‌های عصبی مصنوعی (دو مدل پیشخور و پایه شعاعی) و تحلیل رگرسیون فازی جهت پیش‌بینی میزان نهایی کدورت پس از فرآیند انعقاد و لخته‌سازی در تصفیه‌خانه‌‌های آب 3 و 4 تهران استفاده شد. پارامترهای بکار رفته در مدلسازی کیفیت آب خروجی شامل نوع منعقدکننده (انواع پلی‌آلومینیوم‌کلراید (PAC))، غلظت منعقدکننده، کدورت ورودی و pH آب خام بوده است. نتایج نشان داد که شبکه‌های عصبی مصنوعی و تحلیل رگرسیون فازی نسبت به سیستم استنتاج عصبی- فازی تطبیقی توانایی بالاتری در پیش‌بینی راندمان حذف کدورت در شرایط مختلف آزمایشگاهی داشته و قابل جایگزینی با روش-های زمان‌بر و هزینه‌بر مانند آزمایش جار می‌باشند. بهترین شبکه ساخته‌شده جهت پیش‌بینی کدورت آب تصفیه‌شده در این مطالعه، شبکه پیشخور با دو لایه مخفی و تعداد 6 و 8 نرون و توابع انتقال Tansig و Purelin به ترتیب در لایه‌های اول و دوم، با استفاده از داده‌های نرمال‌شده و با اصلاح تابع کارایی بوده است. این شبکه موفق به پیش‌بینی فرایند انعقاد با ضریب همبستگی 96/0، شاخص تطابق 99/0 و مجذور میانگین مربعات خطای 0106/0 گردید. بهترین راندمان سیستم در شرایط بهره‌برداری با کدورت اولیه NTU 160، pH معادل 8، منعقد کننده PAC نوع I با دوز mg/L 19 و با راندمان 5/99 درصد تعیین شد.

کلیدواژه‌ها


عنوان مقاله English

Comparision between ANN, Fuzzy regression and ANFIS analysis in prediction of coagulation and floculation process

چکیده English

Surface water contains various type of suspended impurities that cause turbidity and color. Coagulation is the main process of integrating fine particles and turn them into larger particles. In this study, replacement of the modeling methods by time-consuming and expensive experimental techniques such as JAR test has been discussed. For this purpose, two models of Feedforward and radial basis of artificial neural networks and Adaptive network-based fuzzy inference system and the various kinds of fuzzy regression analysis to predict the ultimate extent of turbidity after coagulation and flocculation process in 3 and 4 Tehran water treatment plants, were studied. The coagulant used in the treatment plant was poly-aluminum chloride (PAC) and the type and concentration of coagulant, pH and turbidity of the raw water, was opted from the basic information. Radial basis model due to the possibility of automatic raising of hidden layer’s neurons to achieve performance function with minimum error, is highly capable in simulating the process of coagulating. Unlike Feedforward networks, radial basis networks required a smaller number of neurons, and also had the ability to change parameters to achieve the desired results. Increasing the number of hidden layer’s neurons and normalizing the input data to the network enhanced the predictability of artificial neural networks. The study also generalize Feedforward networks to predict data validation and correction of the increasing of performance function. Due to the uncertainty which caused by human error in the laboratory, adaptive network-based fuzzy inference system and fuzzy regression, in which the data sets in the form of fuzzy, were used. The results showed that artificial neural networks and fuzzy regression analysis had more ability in simulating the coagulation process and turbidity removal in different experimental conditions rather than adaptive network-based fuzzy inference system and had the ability to replace the JAR test with time-consuming and expensive methods. The best network built to predict the filtered water turbidity in this study was feed forward network with two hidden layers and 6 and 8 neurons and Tansig and Purelin transfer functions respectively in the first and second layers, using normalized data with performance function. This network is able to predict the coagulation process with a Correlation Coefficient of 0.96 and 0.99 Agreement Index and root mean square error 0.0106. Best predicting done by regression analysis using fuzzy quadratic function. This function was able to predict the data validation with a correlation coefficient, and Agreement Index and root mean square error, respectively, 0.94, 0.96 and 0.75. adaptive network-based fuzzy inference system with the use of Gaussmf membership functions for raw water turbidity and pH input ,and type and Trimf had best efficiency to apply coagulant concentration data into network and estimated the filtered water turbidity with correlation coefficient of 0.89, Agreement Index of 0.91, and squares error of 1.02. This system showed that increasing initial turbidity caused removal efficiency increased and the best impaction of coagulation process for the removal of turbidity would be occurred in the range of pH, 7.6 to 8. The best efficiency in operation condition was determined 99.5% in initial turbidity of 160 NTU, pH=8 and 19 mg/L dosage of PAC coagulant type I.

کلیدواژه‌ها English

Water treatment
coagulation and flocculation
ANN
ANFIS
Fuzzy regression analys
]1[ ریاحی؛ ر.؛ "بررسی کارایی پلی­آلومینیوم­کلراید در افزایش راندمان تصفیه­خانه­های آب"؛ پایان­نامه کارشناسی ارشد؛ دانشگاه صنعت آب و برق (شهید عباسپور)؛ تهران، 1385.
 [2] Clark; T.; Stephenson; T.; “Development of a Jar testing protocol for chemical phosphorus removal in activated sludge using statistical experimental design”; Wat. Res.; Vol. 33, .; 33(7), 1999,  1730-1734.
[3] Gagnon; C.; Grandjean; B.P.A.; Thibault; J.; “Modelling of coagulant dosage in a water treatment plant”; Artificial Intelligence in Engineering 11,1997, 401–404.
[4] Leeuwen; V.; “Empirical mathematical models and artificial neural networks for the determination of alum doses for treatment of southern Australian surface waters”; Aqua; 48(3), 1999, 115-127.
[5] Maier, H.R., Morgan, N., & Christopher, W.K. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters, Environmental Modelling & Software, 19, 2004, 485–494.
[6] Larmrini; B.; Benhammou; A.; Le Lann; M.-V.; & Karama; A.; “A neural software sensor for online prediction of coagulant dosage in a drinking water treatment plant”; Transactions of the Institute of Measurement and Control; 27(3), 2005, 195–213.
[7] Czerniczyniec; M.; Faras; S.; Magallanes; J.; & Cicerone; D.; “Arsenic(V) adsorption onto biogenic hydroxyapatite: solution composition effects”; Water Air and Soil Pollution; 180(1–4), 2007,  75–82.
[8] Wu; G.-D.; Lo; S.-L.; “Predicting real time coagulant dosage in water treatment by artificial  neural networks and adaptive network-based fuzzy inference system”; Engineering Applications of Artificial Intelligence; 21(8), 2008, 1189-1195.
[9] Heddam; S.; Bermad; A.,; and Dechemi; N.; “ANFIS-based modelling for coagulant dosage in drinking  water treatment plant: A case study” Environmental Monitoring and Assessment; 184 (4), 2012, 1953-1971.
[10] Guan-De; Wu; Shang-Lien; Lo; “Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system”; Engineering Applications of Artificial Intelligence 21; 2008, 1189– 1195.
[11] Guan-De; Wu; Shang-Lien; Lo; “Effects of data normalization and inherent-factor on decision of optimal coagulant dosage in water treatment by artificial neural network”; Expert Systems with Applications 37; 2010, 4974–4983.
]12[ داغبندان؛ ا.؛ اکبری­زاده؛ م.؛ "طراحی ساختارهای ANFIS و شبکه­های عصبی GMDH برای پیش­بینی میزان بهینه مصرف ماده منعقدکننده در فرآیند تصفیه آب. مطالعه موردی: تصفیه­خانه بزرگ آب گیلان"؛ مجله آب و فاضلاب؛ قرارگرفته در نوبت چاپ زمستان 93، به نشانی: wwcerd.com.
[13] Bello; O.; Hamam; Y.; Djouani; K.; “Coagulation process control in water treatment plants using multiple model predictive control”; Alexandria Engineering Journal, 53(4), 2014, 939–948.
[14] Bello; O.; Hamam; Y.; Djouani; K.; “Modelling of a coagulation chemical dosing unit for water treatment plants using fuzzy inference system”; Preprints of the 19th World Congress, The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 2014.
[15] Tanaka; H.; “Fuzzy data analysis by possibility linear models”; Fuzzy Sets and Systems; 24(3), 1987, 363- 375.
[16] Kim; B.; Bishu; R.R.; “Evaluation of fuzzy linear regression modeles by comparing membership functions”; Fuzzy Sets and System; Vol. 100; 1998.
[17] Ching-Gung; W.; Chih-Sheng; L.; “Development of a cost function for wastewater treatment”; Fuzzy sets and systems; 106, 1997, 143- 701.
[18] Baxter; C.W.; Stanley; S.J.; Zhang; Q.; “Development of a fullscale artificial neural network model for the removal of natural organic matter by enhanced coagulation”; Journal of Water Supply Research and Technology; Aqua 48 (4), 1999, 129–136.
[19] Bestamin; O.; Ahmet; D.; “Neural network prediction model for the methane fraction in biogas from field scale landfill bioreactors”; Environmental Modelling & Software; 22, 2007, 15 -822.
[20] Rumelhart; D. E.; & McClelland; J. L.; “Parallel distribution processing: Exploration in the microstructure of cognition”; Cambridge, MA: MIT Press (p. 1), 1986.
[21] Hornik; K.; Stinchcombe; M.; White; H.; “Multi layer Feedforward networks are universal approximators”; Neural Networks; 2, 1989, 359–366.
[22] Zurada; J.M.; “Introduction to Artificial Neural Systems”; PWS; Singapore; 1992, 195–196.
[23] Cohen; S.; & Intrator; N.; “Automatic model selection in a hybrid perceptron/ radial network”; Information Fusion: Special Issue on Multiple Experts; 3(4), 2002, 259–266.
[24] Hwarng; H.B.; Ang; H. T.; “A simple neural network for ARMA (p; q) time series”; Omega 29; 2001, 319 – 333.
[25] Yen.; K.K.; Ghoshray; S.; “A linear regression model using triangular fuzzy number coefficient”; Fuzzy Sets and Systems; Vol. 106, 1999.
[26] Zadeh; L.A; “Fuzzy sets”; Information and Control; 8(3), 1965, 338-353.
[27] Williams; K.S.; D.G.; Tarboton; “The ABC’s of Snowmelt: A Topographically Factorized Energy Component Snowmelt Model”; International Conference on Snow Hydrology; Brownsville Vermont, USA, 1998.
[28] Jang; J.S.R.; “ANFIS: Adaptive-network-based fuzzy inference system”;  Systems, Man and  Cybernetics, IEEE Transactions, 23(3), 1993, 665-685.