الگوی جریان و آبشستگی سری سه تایی آبشکن های سرسپری در قوس تند

نویسندگان
1 دانشگاه خلیج فارس بوشهر
2 دانشگاه تربیت مدرس
چکیده
آبشکن‌های رودخانه‌ای، از سازه‌های مهم ساماندهی رودخانه به شمار می‌آیند که سبب انحراف جریان از کناره‌ها و نواحی بحرانی شده و جریان را به سمت محور مرکزی رودخانه هدایت می‌نمایند. نتیجه‌ی انحراف جریان، توسعه یک ناحیه چرخشی با تلاطم شدید در پیرامون آبشکن است. فرایند هیدرولیکی این جریان، توسعه حفره آبشستگی پیرامون آبشکن و ته‌نشینی بار رسوبی در پایین‌دست و کناره رودخانه است. در حالی که آبشستگی یک خطر جدی برای سازه آبشکن و در نتیجه برای رودخانه محسوب می‌شود، ضرورت تحقیق در این زمینه را آشکار می سازد. در این مقاله سه آبشکن سرسپری دافع (رو به بالادست) با فاصله 3.5 برابر طول موثر آبشکن در قوس خارجی کانال 90 درجه تند قرار گرفته‌اند و آبشکن اول در موقعیت 30 درجه از قوس خارجی قرار دارد. نتایج حاصل از یک آزمایش میدان جریان در بستر هموار و آزمایش آبشستگی آن ارائه شده است. میدان جریان با استفاده از دستگاه سرعت سنج Vectrino II برداشت شده است. نتایج آبشستگی نشان داد میزان آبشستگی آبشکن دوم 33% و آبشستگی آبشکن سوم 81% بیشترین میزان آبشستگی است که در بالادست آبشکن اول رخ می‌دهد. در این مقاله الگوی جریان و مکانیزم ایجاد آبشستگی و جریان‌هایی که در این محدوده به وقوع می‌پیوندند به تفصیل آمده است.

کلیدواژه‌ها


عنوان مقاله English

Flow Field and Scouring around Triplex Shielded Spur Dikes in Sharp Bend

چکیده English

Spur dike is one of the river training structures that is considered to deviate the river from critical and erodible areas and the flow from the sides and towards the central axis. As a result of flow is developing a circular area with high turbulence around the spur dike. The hydraulic process results development of the scour hole on the upstream of the spur dike and settlement of sediment in the downstream and sides of the river. While scouring in spur dike structures results a serious threat to the river so it is needed to be researches in this field. This paper describes triplex repellent shielded spur dikes (directed to the upstream) with a distance of 3.5 times of the effective length of the spur dike in the outer bank of the channel. The first spur dike is located at 30 degree from the start of bend. The experimental channel is a 90º channel with rectangular section. The radius of curvature to the channel width is 2, which is classified as a sharp bend. Materials used are sands with uniform grains and its mean diameter is 1.28mm and its standard deviation coefficient is 1.3 and the relative density of sediment is 2.35. The results of flow field on flat bed and a scouring experiment are presented. Discharge was 25 l/s and All scour tests were done in 24 hours and in the moving threshold conditions (U/Uc =0.98) and clear water condition. Flow field is recorded using the Vectrino II velocimeter that can profile water in a 3cm column. It was found that in the levels upstream of the first spur dike in an adjacent to bed, stream lines are deviated to the inner bank. While in the middle levels, flow lines upstream of the spur dike is almost parallel to the channel walls and approached the spur dike, resulting deviation in the separation zone. In the scouring experiment it was obvious that at the beginning of the experiment, thus creating the down flow upstream of the spur dikes scouring initiates near the wing of each spur dike and it develops by the horse shoe vortex. But with the time sediment had been washed from upstream of the first spur dike, and moved to the foot of the spur dike until it reaches upstream of the former to the latter. Then scour hole upstream of the second spur dike starts to form. Results showed that the amount of scour upstream of second spur dike is 33 % and upstream of third spur dike is 81 % the maximum amount of scour that occurs upstream of the first spur dike. Mechanism causing scour and flows occurring within this range detailed in this paper.

کلیدواژه‌ها English

flow field
scour
series of spur dikes
repellent
sharp bend
- مراجع                                                                                                          References
 [1]Haltigin; W., T. ; Biron; M., P.; and Lapointe; F., M.; “Three-dimensional numerical simulation of flow around stream deflectors: The effect of obstruction angle and length”; Journal of Hydraulic Research; Vol. 45, No. 2, 2007, pp. 227-238
[2] Koken, M.; “Coherent structures around isolated spur dikes at various approach flow angles”; Journal of Hydraulic Research;Vol. 49, No. 6, 2011, pp. 736–743
 [3]Ouillon; S.; Dartus; D.; “Three-Dimensional Computation of Flow around Groyne”; Journal of Hydraulic Engineering; Vol. 123, No. 11, 1997
[4] Kang; J.; Yeo; H.; “Experimental Study on the Flow Characteristics of -Type Groyne”; Journal of Engineering; Vol.3, 2011, pp. 1002-1011
[5] Sukhodolov; A.; Engelhardt; C.; Kruger; A.; and Bungartz; H.; “Case Study: Turbulent Flow and Sediment Distributions in a Groyne Field”; Journal of Hydraulic Engineering; Vol. 130, No. 1, 2004
[6] Weitbrecht; V.; Socolofsky; A., S.; Jirka; H.G.; Experiments on MassExchange between Groin Fields and Main Stream in Rivers; Journal of Hydraulic Engineering; Vol. 134, No. 2, 2008
[7] Yossef; M., F., M.; de Vriend; J.,H.; “Flow Details near River Groynes: Experimental Investigation”, Journal of Hydraulic Engineering, Vol. 137, No. 5, 2011
[8] Kuhnle, A., R.; Alonso V., C.; and ShieldsJr D., F.; “Local Scour Associated with Angled Spur Dikes”; Journal of Hydraulic Engineering, Vol. 128, No. 12, 2002
[9] Karami, H., Ardeshir, A. , Behzadian, K.,and Ghodsian, M., Protective Spur Dike for Scour Mitigation of Existing Spur Dikes,Journal of Hydraulic Research, Vol. 49, No. 6, pp. 809–813, 2011
 
[10] Li, h., Barkdoll B. D., Kuhnle, R. and Alonso, C., Parallel Walls as an Abutment Scour Countermeasure. Journal of Hydraulic Engineering; Vol. 132, No. 5, 2006, pp. 510-520
[11] Godsian M.; Vaghefi M.; “Experimental study on scour and flow field in a scour hole around a T-shape spur dike in a 90º bend”;.International Journal of Sediment Research, Vol. 24, No. 2, 2009, pp 145-158
[12] Vaghefi M.; Godsian M.; Salehi Neyshaboori S. A. A.; “Experimental Study on Scour around a T-Shaped Spur Dike in a Channel Bend”; Journal of Hydraulic Engineering, Vol. 138, No. 5, 2012