بررسی آزمایشگاهی رفتار بیرون کشیدگی الیاف مایل از ماتریس پایه سیمانی

نویسندگان
1 دانشگاه شاهرود
2 دانشیار دانشکده عمران و معماری، دانشگاه شاهرود
3 دانشیار دانشکده عمران و محیط زیست، دانشگاه تربیت مدرس
چکیده
ماتریس‌های پایه سیمانی دارای مقاومت کششی و شکل‌پذیری ناچیز می‌باشند. افزودن الیاف به این ماتریس‌ها سبب بهبود مشخصات مکانیکی آنها می‌شود. مقاومت کششی پس از ترک‌خوردگی مواد مرکب سیمانی مسلح شده با الیاف فولادی به صورت مستقیم با تعداد الیاف عبور کننده از عرض ترک و رفتار بیرون کشیده شدن هرکدام از الیاف مرتبط می‌باشد. بنابراین شناخت دقیق رفتار بیرون کشیدگی الیاف منفرد، به‌ منظور فهم رفتار کششی تک محوره و رفتار خمشی بتن‌های الیافی مسلح با الیاف فولادی ضروری بنظر می‌رسد. از آنجایی‌که الیاف فولادی قلابدار یکی از کاراترین نوع الیاف مورد استفاده برای کاربردهای سازه‌ای هستند، لذا بررسی و شناخت دقیق رفتار بیرون‌کشیدگی این نوع از الیاف از اهمیت بسیار بالایی برخوردار می‌باشد. در این مقاله یک مطالعه تجربی بر روی رفتار بیرون‌کشیدگی الیاف فولادی قلابدار در حالت‌هایی که الیاف عمود بر عرض ترک و یا به صورت مایل قرار می‌گیرند انجام گردیده و با بررسی رفتار بیرون‌کشیدگی الیاف فولادی قلابدار در زوایای تمایل 0، 15، 30، 45 و 60 و در طول مدفون های 10، 15، 20 و 25 میلی‌متر تاثیر زاویه تمایل الیاف نسبت به امتداد بارگذاری و طول مدفون الیاف، بر روی پاسخ بیرون‌کشیدگی شامل؛ بیشینه نیروی بیرون‌کشیدگی، لغزش مربوط به نقطه بیشینه نیرو، انرژی بیرون‌کشیدگی، میزان موثر بودن الیاف و همچنین کنده‌شدگی ماتریس در هر حالت مورد مطالعه قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله English

Experimental investigation of pull-out behavior of inclined fiber from cementitious matrix

نویسندگان English

Ehsan Zeighami 1
Farshid Jandaghi Alaee 2
Mansour Jamee 1
Masoud Soltani Mohammadi 3
Masoud Soltani Mohammadi 3
1 Hafte Tir Square
2 Hafte Tir Square
3 Associate Prof., Civil Eng Dept., Faculty of Civil Eng.,Tarbiat Modares University
چکیده English

This paper presents the pull-out characteristics of inclined hooked steel fiber from cementitious matrix. The effect of fiber embedded length and angle of inclination are evaluated together with the interaction of these parameters. The experimental program involved single fiber pull-out test of five inclination angle and four embedded length. The studied inclination angles were 0, 15, 30, 45 and 60 degrees. The embedded lengths were 10, 15, 20 and 25 mm. Compressive strength of matrix was 40 Mpa. The length and diameter of hooked steel fibers were 50 mm and 1mm, respectively and their tensile strength was 800 Mpa. At least five specimens were prepared and tested for each combination of inclination angle and embedded length. A special mold supplemented by a cross shaped device was designed to hold the fiber in desired angle and embedded length. X-ray radiography was used to verify the inclination angle and embedded length of fiber. All the specimens were tested at 28-day age. Pull-out test performed under displacement control condition in order to record descending branch of pull-out curves. A load cell and a displacement transducer were used to acquire pull-out load and slip during pull-out test. Pull-out load versus slip were recorded and parameters such as maximum pull-out force and its associated slip, pull-out energy, fiber efficiency and matrix spalling were drawn for comparison purpose. Based on the experimental results, the pull-out response of hooked steel fibers is predominately influenced by fiber embedded length and inclination angle. The results indicate that the peak pull-out load is maximized at approximately 30 degrees, although at greater inclination angle, the peak pull-out load decreases. The fracture load also decreases as fiber inclination angle increases. The additional shear stress imposed on inclined fibers; provide mechanisms favoring slip between the crystals in the steel. This causes a reduction in both yield and ultimate strength of the finer, resulting in a reduced fracture load. The results indicate that providing the hook is fully mobilized, the peak pull-out load is almost independent of embedded length of fiber. The results indicate that fracture of fiber is more presumable at greater inclination angle. Slip associated with peak pull-out load increases as the inclination angle increases. This can be attributed to matrix spalling. Matrix spalling also causes the drop of pull-out load in pull-out curves. The load drop is directly related to the size of crushed matrix. Matrix starts to spall at 30 degrees inclination angle. The results indicate that increase in embedded length and inclination angle result in increase of pull-out energy. An inclined fiber with respect to the loading direction absorbs a greater amount of energy at a given slip than an aligned one, with maximum pull-out energy occurring around 30 degrees. Fiber efficiency increases as the embedded length of fiber increases. Maximum fiber efficiency occurs at 30 to 45 degrees and decreases at greater inclination angle. The effect of elastic deformation of fiber during pull-out test was taken into account by calculation of elastic deformation and subtracting from slip, although, its effect was negligible.

کلیدواژه‌ها English

Hooked Steel Fiber
Pull-out Behavior
Cement-based Matrix
[1] Kanda, T., and Li, V.; “Effect of Fiber Strength and Fiber-Matrix Interface on Crack Bridging in Cement Composites”; Journal of Engineering Mechanics, 125(3), 1999, 290–299.
[2] Naaman, A. E.; “Evaluation of steel fibers for applications in structural concrete”; 6th International RILEM Symposium on Fibre Reinforced Concretes, 2004, 389–400.
[3] Banthia, N., and Trottier, J.-F.; “Concrete reinforced with deformed steel fibers, part I: bond-slip mechanisms”; ACI Materials Journal, 1994, pp. 435–445.
[4] Lawrence, P.; “Some theoretical considerations of fibre pullout from an elastic matrix”; Journal of Materials Science, 7, 1972, 1–6.
[5] Fantilli, A.,  and Vallini,  P.; “A cohesive interface model for the pullout of inclined steel fibers in cementitious matrixes”; Journal of Advanced Concrete Technology  , 2007, 247–258.
[6] Mandel, J., Wei, S., and Said, S.; “Studies of the properties of the fiber-matrix interface in steel fiber reinforced mortar”; ACI Materials Journal, 84, 1987, 101–109.
[7] Naaman, A. E., Namur, G., Alwan, J., and Najm, H.; “Fiber Pullout and Bond Slip. I: Analytical Study. II: Experimental validation”; Journal of Structural Engineering, 117, 1991, 2769–2800.
[8] Alwan, J., Naaman, A. E., and Guerrero, P.; “Effect of mechanical clamping on the pullout response of hooked steel fibers embedded in cementitious matrices”; Concrete Science and Engineering 1, 1999, 15–25.
[9] Ouyang, C., Pacios, A., and Shah, S.; “Pullout of Inclined Fibers from Cementitious Matrix”; Journal of Engineering Mechanics, 120(12), 1994, 2641–2659.
[10] Robins, P., Austin, S., and Jones, P.; “Pullout behavior of hooked end steel fibres”; Materials and Structures 35(7), 2002, pp. 434–442.
 
[11] Li, V.C., Wang, Y., and  Backer, S.; “Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix”; Composites, 21(2), 1990, 132–140.

[12] Ghoddousi, P., Ahmadi, R., and Sharifi, M.; “Fiber pullout model for aligned hooked-end steel fiber”; Canadian Journal of Civil Engineering, 37 (9), 2010, 1179-1188.


[13] Laranjeira, F., Molins, C., and Aguado, A.; “Predicting the pullout response of inclined hooked steel fibers”; Cement and Concrete Research 40(10), 2010, pp. 1471–1487.
[14] Laranjeira, F., Aguado, A., and Molins, C.; “Predicting the pullout response of inclined straight steel fibers. Materials and Structures 43, 2010, pp. 875–895.
[15] Van Gysel, A. ;”A pullout model for hooked end steel fibres”; High Performance Fiber Reinforced Cement Composites(HPFRCC 3), RILEM Publications S.A.R.L., 1999.
[16] Zhang, J., and Li, V. C., “Effect of inclination angle on fiber rupture load in fiber reinforced cementitious composites”; Composites Science and Technology 62, 2002, 775–781.
[17]  Lee, Y., Kang, S., and Kim, J. K. ;“Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix”; Construction and Building Materials2010, 24(10),2030–2041.
[18] Tuyan, M., and Yazıcı H.; “Pull-out behavior of single steel fiber from SIFCON matrix”; Construction and Building Materials, 35, 2012, 571-577.
[19] Stefanidi, K. G., Mistakidis E., Pantousa D., and Zygomalas M. ;“Numerical modelling of the pull-out of hooked steel fibres from high-strength cementitious matrix, supplemented by experimental results”; Construction and Building Materials, 24(12), .2010, 2489-2506.
[20] Soetens, T., Van Gysel, A., Matthys, S., and Taerwe, L.; “A semi-analytical model to predict the pull-out behaviour of inclined hooked-end steel fibres”; Construction and Building Materials, 43, 2013, 253-265.  
[21] Breitenbücher, R., Meschke, G., Song, F., and Zhan, Y.; “Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths”; Structural Concrete, 15(2), 2014, 126-135.