بررسی اثرات شکل‌های بستر شنی با تاج مسطح و پوشش گیاهی دیوار بر پارامترهای جریان آشفته

نویسندگان
1 دانشجو
2 عضو هیأت علمی
چکیده
پوشش گیاهی با ایجاد زبری در دیواره کانال‌ها و دشت‌های سیلابی رودخانه‌ها بر شکل هندسی، هیدرولیک و مقاومت جریان تأثیر گذاشته و مکانیزم انتقال رسوب را تغییر می‌دهد. با توجه به اهمیت شکل‌های بستر نظیر تلماسه‌ها در کنترل میزان انتقال رسوب، تولید آشفتگی و ایجاد مقاومت جریان، مطالعه اثرات شکل‌های بستر شنی و پوشش گیاهی بر ساختار جریان ضروری به نظر می‌رسد. هدف از پژوهش حاضر مطالعه ساختار جریان بر روی تلماسه‌های شنی با تاج مسطح به همراه پوشش گیاهی در دیواره است. برای دست‌یابی به این هدف تعداد هفت تلماسه مصنوعی با تاج مسطح در طول یک کانال آزمایشگاهی مورد بررسی قرار گرفته‌اند. اندازه‌گیری داده‌های سرعت و آشفتگی با استفاده از سرعت‌سنج صوتی انجام شد. نتایج نشان داد که در تلماسه‌های با تاج مسطح بر خلاف تلماسه‌های با تاج تیز، در هر دو حالت وجود و عدم وجود پوشش گیاهی، پارامتر سرعت بعد از تاج مسطح مقادیر منفی به خود نمی‌گیرد. تنش‌های رینولدز در حالت وجود نسبت به حالت عدم وجود پوشش گیاهی بیشتر هستند که این موضوع را می‌توان به افزایش مقاومت جریان در حضور پوشش گیاهی نسبت داد.

کلیدواژه‌ها


عنوان مقاله English

Effects of straight-crested gravel bedforms and vegetated banks on turbulent flow characteristics

چکیده English

Rivers have been always the main source of water for human kind and the basic element of population development. Study of the interaction between flow structure and bedforms is one way to understand the behavior of the rivers. Moreover,vegetation in natural rivers increases roughness of the main channel and flood plains which affects the geometry of channels, flow structure, bed resistance and consequently the pattern of sediment transport. Considering the role of bedforms on sediment transport, turbulence production and flow resistance, investigations on details of flow-bedforms interaction, vegetated banks and flow structure seem to be essential. In this study, the influence of straight crested gravel bedforms and vegetation of the banks of channels on flow turbulent characteristics are investigated based on model experimentation. For this purpose, seven fixed artificial 2-D straight crested bedforms were built inside a rectangular flume of 8 m long, 0.4 m wide and 0.6 m deep. The graded gravel particles used to create the bedforms had an average diameter of d50 = 10 mm. Johnson grasses with a diameter of 2.8 mm were used to simulate vegetation cover on the flume side-walls. Since, the fully developed flow was just observed after the fifth dune, experimental measurements were performed over the fifth and sixth dunes. Overall, three runs were performed over the dunes with a wave length, height, angle of repose and flow depth of 0.96 m, 0.04 m, 28 degrees and 0.28 m, respectively. In the first case 17 velocity profiles and in the second and the third cases 21 velocity profiles were measured. All the tests were performed with a constant discharge of 0.024 m3/s. The instantaneous three-dimensional velocity components were measured using a down-looking Acoustic Doppler Velocimeter ADV. Velocities were recorded for each point with a sampling rate of 200 Hz and the sampling volume of 5 mm. The sampling duration was at least 120 seconds. Overall, about 45400000 velocity data were collected, filtered by WinADV software. Results indicated no negative velocities for both cases of with and without vegetation cover. For no vegetation case, the least value of velocity was zero at a small region on the lee side of the dune. Whereas, for the case of vegetating the side-walls, the zero value of velocity was located at the dune's trough. Negative vertical velocity value in both cases of with and without vegetation along a dune confirmed that separation is not dominant for the case of straight crested dunes compared to the corresponding sharp-crested bedforms. The Reynolds stresses increase for the case of vegetating the side-walls compared to the case of without vegetation cover. This is in part due to the increase of flow resistance, while the side-walls are vegetated. Rivers have been always the main source of water for human kind and the basic element of population development. Study of the interaction between flow structure and bedforms is one way to understand the behavior of the rivers. Moreover,vegetation in natural rivers increases roughness of the main channel and flood plains which affects the geometry of channels, flow structure, bed resistance and consequently the pattern of sediment transport. Considering the role of bedforms on sediment transport, turbulence production and flow resistance, investigations on details of flow-bedforms interaction, vegetated banks and flow structure seem to be essential.

کلیدواژه‌ها English

Gravel bedform
Vegetated wall
Reynolds stress
Turbulent flow
[1] Best, J. L. 1993. On the interaction between turbulent flow structure, sediment transport and bedform development: some considerations from recent experimental research. In: N. J. Clifford, J. R. French, and J. Hardisty (Eds.), Turbulence: Perspectives on Flow and Sediment Transport, John Wiley & Sons Ltd., New York, 360pp.
[2] Afzalimehr, H., Singh, V. P. and E. Fazel Najafabadi. 2010. Determination of form friction factor. J. Hydraul. Eng., ASCE. 15: 3: 237-243.
[3] McLean, S. R., Nelson, J. M. and S. R. Wolfe. 1994. Turbulence structure over two-dimensional bed forms: Implication for sediment transport. J. Geophys. Res. 99: 12, 729-12, 747.
[4] Gomez, B. 1991. Bedload transport. Earth Sci. Rev. 31: 89-32.
[5] Bartholdy, J., Bartholoma, A., Ernstsen, V. B. and B.W. Flemming. 2005. Flow and grain size control of depth-independent simple subaqueous dunes. J. Geophys. Res.110: F4: F04S16.
[6] Venditti, J.G., Church, M. and S.J. Bennett. 2006. On interfacial instability as a cause of transverse subcritical bed forms. Water Resour. Res.42: 7: W07423.
[7] Venditti, J. G. 2007. Turbulent flow and drag over fixed two- and three-dimensional dunes. J. Geophys. Res. 112, F04008.
[8] Stoesser, T. M., Braun, C., Garcia-Villalba, M. and W. M. Rodi. 2008. Turbulence structures in flow over two-dimensional dunes. J. Hydraul. Eng, ASCE. 134: 42-55.
[9] Mazumder, B. S., Pal, D., Ghoshal, K. and S. P. Ojha. 2009. Turbulence statistics of flow over isolated scalene and isoscalene triangular-shaped bedforms. J. Hydraul. Res. Vol. 47, No. 5, PP. 626-637.
[10] Afzalimehr, H., Dey, S. and P. Rasoulianfar. 2007. Influence of decelerating flow on incipient motion of gravel-bed streams, Sadhana, 32:545-559.
[11] نصیری ده‌سرخی ا. 1388. برهم‌کنش پوشش گیاهی، شکل‌های بستر و ساختار جریان بر توزیع‌های سرعت و شدت‌های توربولانس. پایان‌نامه کارشناسی ارشد آبیاری و زهکشی. دانشگاه صنعتی اصفهان.
[12] Nasiri Dehsorkhi, N., Afzalimehr, H. and V. P. Singh. 2011. Effects of bedforms and vegetated banks on velocity distributions and turbulent flow structure. J. Hydrol. Eng, ASCE. 16. 495.
[13] Nasiri Dehsorkhi, N., Afzalimehr, H. and J. Sui. 2010. Effects of vegetation channel banks and gravel size on flow structure. Int. J. Sed. Res. Vol. 25, No. 2, pp. 110-118.
[14] Van Mierlo, M. C. L. M. and J. C. C. de Ruiter. 1988. Turbulence measurements above artificial dunes. Technical Report, TOW A55 Q789, PP. 142. Delft Hydraulics Laboratory, Delft, Netherlands.
[15] Bennett, S. J. and J. L. Best. 1995. Mean flow and turbulence structure over fixed, two-dimensional dunes: Implication for sediment transport and bed form stability. Sedimentology, Vol. 42, PP. 491-513.
[16] Fedele, J.J. and M.H. Garcia. 2001. Alluvial roughness in streams with dunes: A boundary-layer Approach. River, Coastal and Estuarine Morphodynanmics. 37-59.
[17] Raudkivi, A. J. 2006. Transition from ripples to dunes. J. Hydraul. Eng, ASCE,Vol. 132: 1316-1320.
[18] Nepf, H. M. and E. W. Koch. 1999. Vertical secondary flows in submerged plant-like arrays. Am. Soc. Limnol. Oceanorg. 44: 1072-1080.
[19] Nepf, H. M. and E. R. Vivoni. 2000. Flow structure in depth-limited vegetated flow. J. Geophys. Res. 105: 28547-28557.
[20] Wilson, C. A. M. E., Stoesser, T., Bares, P. D. and A. Batemann Pinzen. 2003. Open channel flow though different forms of submerged flexible vegetation. J. Hydraul. Eng. ASCE, 129: 847-853.
[21] White, B. L. and H. N. Nepf. 2007. Shear instability and coherent structures in shallow flow adjacent to a porous layer. J. Fluid Mech. 593: 1-32.
[22] Afzalimehr, H. and S. Dey. 2009. Influence of bank vegetation and gravel bed on velocity and Reynolds stress distributions. Int. J. Sediment Res. 24: 2: 236-246.
[23] User guide of VECTRINO Velocimeter, October 2004. Nortek AS, Norway.
[24] Carling, P. A. 1996. Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. Sedimentology. 43: 4: 647-664.