بررسی الگوی جریان اطراف آبشکن با دیواره‌ی شیب‌دار

نویسندگان
1 دانشجوی کارشناسی ارشد دانشگاه تربیت مدرس
2 استادیار دانشگاه محقق اردبیلی
3 استاد سازه های هیدرولیکی پژوهشکده مهندسی آب، دانشگاه تربیت مدرس
چکیده
در این مقاله به مطالعه‌ی آزمایشگاهی ساختار جریان پیرامون آبشکن با دیواره‌ی شیب‌دار پرداخته شده است. بدین منظور، هیدرودینامیک سه بعدی اطراف تک آبشکن مستقیم با دیواره‌ی شیب‌دار 75 درجه، بصورت آزمایشگاهی و در یک کانال مستقیم با بستر صلب مورد مطالعه قرار گرفت. مشخصات جریان با برداشت پارامترهای آشفتگی اطراف آبشکن به وسیله سرعت‌سنج نقطه‌ای سه بعدی ADV، مورد بررسی قرار گرفت. در پشت آبشکن با کاهش سرعت جریان که منجر به تشکیل ناحیه‌ی سکون می شود، سرعت جریان در نواحی میانی افزایش می‌یابد. به همین علت جریان به دو قسمت تقسیم شده و قسمتی از جریان به سمت بالا و قسمتی از جریان به سمت پایین که فشار کمتر است، حرکت می‌کند. جریان پایین رونده عامل تشکیل گردابه‌ی نعل اسبی می‌باشد. دو ناحیه‌ی تشدید سرعت، که اولی مربوط به تشدید سرعت در هسته‌ی اصلی جریان و ناشی از کاهش عرض عبوری جریان بوده و ناحیه‌ی پرسرعت دیگر که مربوط به تشدید موضعی سرعت در پایین‌دست آبشکن و در ناحیه‌ی بیرونی لایه‌ی برشی می‌باشد، تشکیل می‌شد و حداکثر مقدار مؤلفه‌ی تنش -ρ(u^' v^' ) ̅در امتداد لایه‌ی برشی رخ می‌دهد. با توجه به مقادیر منفی تنش‌های رینولدز (-ρ(v^' w^' ) ̅) و (-ρ(u^' w^' ) ̅)، تجمع رسوبات در ناحیه‌ی چرخشی پشت آبشکن اتفاق می افتد.

کلیدواژه‌ها


عنوان مقاله English

Experimental study of flow around spur dike with side slope

چکیده English

Experimental study on effect of single spur dike side slope on flow structure carried out. In the study, 3D flow dynamics around the single spur dike with side slope of 75 degree has been studied experimentally in straight fixed bed channel. In order to analysis of flow characteristics, turbulence parameters flow around the scour have been measured using Acoustic Doppler Velocimeter (ADV). In behind of the spur dike, due to reduction of flow velocity that leads to formation of stationary zone, flow velocity will be increased in central zones. Therefore, a part of the flow is conducted upward and another part will be directed downward, where the pressure is lower. Downward flow is the cause of horseshoe vortex formation. Two velocity intensifier zones is formed, one is located in the main core of flow which is caused by reduction of flow width and the other one is a high velocity zone that is related to local velocity intensifying in outer layer of shear zone in the downstream of the spur dike. This is stemmed from increase in velocity of flow caused by reduction in flow width and leads to scour initiation from this zone. The maximum amount of “-ρ(u^' v^' ) ̅” stress element in shearing layer direction is occurred. Regarding to negative amounts of “-ρ(v^' w^' ) ̅” and “-ρ(u^' w^' ) ̅” stress elements, accumulation of deposits is happened in circular zone behind the spur dikes. Increases in both the speed, a core area to increase the speed of the flow and reduce the width of the high-speed flow and other areas related to the intensification of local rapidly down the breakwater and in the area the outer layer the shear is formed. The maximum mean flow velocity at the bottom of the breakwater 55/1 is the mean flow velocity is approaching. In the upstream region of the breakwater a rotating flow in the leg is shaped breakwater. It has small dimensions and rotational flow near the breakwater body rotation power was concentrated in the can be high. Upstream of the nose, the lines of the horseshoe vortex, the rotation around the nose, the hands move downward and adjacent layers come to be intertwined with the shear. The average flow field, the maximum kinetic energy in the central part of the channel and away from the shear layer form is the maximum kinetic energy of turbulence along the shear layer will occur. Increase in kinetic energy along the shear layer plays an important role in the sediment bed holds it down, so that the kinetic energy due to the formation of vortex turbulence the total flow depth have been developed. In behind of the spur dike, due to reduction of flow velocity that leads to formation of stationary zone, flow velocity will be increased in central zones. Therefore, a part of the flow is conducted upward and another part will be directed downward, where the pressure is lower.

کلیدواژه‌ها English

Side angle
spur dike
Turbulence parameters
[1]Ahmed, M. 1953. Experiments on design and behavior of spur-dikes, In proc. Minnesota International Hydraulics Convention, Minneapolis.145-59.
[2]Chen, F. Y., and Ikeda, S. 1997. Horizontal separation in shallow open channels with spur dikes. Journal of Hydroscience and Hydraulic Engineering, 15(2): 15-30.
 [3]Ahmed,  F., and Rajaratnam,  N. 2000. Observations  on flow around bridge abutments.  J. Eng. Mech., ASCE, 126(1): 51-59.
 [4]  Ujitewaal  W.  2005.  Effect  of  groyne  layout  on  the  flow  in  groyne  fields:  laboratory experiments. J. Hydraul. Eng., 131(9): 782-91.
[5]Nagata, N., Hosada T., and Nakato, T. 2005. Three-dimensional  numerical model for flow and bed deformation around river hydraulic structures. J. Hydraul. Eng., 131(12): 1074-1087.
[6] Kadota, A., Suzuki, K. and Uijtewaal, W. S. J. 2006. The shallow flow around a single groyne under submerged and emerged conditions. RiverFlow 2006, Portugal, 673-682.
[7]Koken, M. and Constantinescu,  G. 2008. An investigation  of the flow and scour mechanisms around isolated spur dikes in a shallow open channel:1. Conditions corresponding to the initiation of the erosion and deposition process. Water resources research. 44, W08406, doi:10.1029/2007WR006489.
[8]Koken, M. and Constantinescu,  G. 2008. An investigation  of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 2. Conditions corresponding to the final stages of the erosion and deposition process. Water resources research. 44, W08407, doi:10.1029/2007WR006491.
[9] Kuhnle, R. A., Alonso, C. V., and Jia, Y. J., . 2008 “Measured and simulated flow near spur dikes, ”. Journal of Hydraulic Engineering, ASCE, Vol.128, No. 12, 1087-1093 
[10]Kuhnle, R. A., Alonso, C. V., and Jia, Y. J., 2008 “Flow around a submerged trapezoidal spur dike test case , ”. Journal of Hydraulic Engineering, ASCE, Vol.128, No. 12, 1087-1093..
[11] Kuhnle, R. A., Alonso, C. V., and Shields, F. D., Jr., 2002. “Local scour associated with angled spur dikes, ”. Journal of Hydraulic Engineering, ASCE, Vol.128, No. 12, 1087-1093..
[12] Duan,  J., 2009. Mean flow and turbulence around a laboratory spur dike. J. Hydraul.  Eng., 135(10): 803-811.
[13]Duan, J., He, L., Fu, X., and Wang, Q. 2009. Mean flow and turbulence around an experimental spur dike. Adv. Water Resour., 132(12): 1717-1725.
[14] صفرزاده گندشمین، ا. 1389.  "مطالعه آزمایشگاهی الگوی جریان آشفته حول آبشکن با شکل‌های مختلف دماغه". رساله دکتری. دانشکده فنی و مهندسی. دانشگاه تربیت مدرس.
[15] Teruzzi, A., Ballio, F., and Armenio, V.  2009. Turbulent stresses at the bottom surface near an abutment: laboratory-scale numerical experiment. J. Hydraul. Eng., 135(2): 106-117.
[16]Nelson, J. M., Shreve, R. L., McLean, S. R., and Drake, T. G. 1995. Role of near-bed turbulence structure on bed load transport and bed form mechanics. Water Resour. Res., 31(8): 2071–2086.