بررسی آزمایشگاهی عملکرد هیدرولیکی سرریزهای قوسی

نویسندگان
1 /دانشگاه تربیت مدرس
2 گروه عمران دانشگاه خوارزمی
3 دانشکده عمران و محیط زیست دانشگاه تربیت مدرس
چکیده
سرریزها نقش تعیین‌کننده‌ای در ایمنی سدها دارند و بخش قابل توجهی از هزینه‌های مربوط به ساخت سد را به خود اختصاص می‌دهند. برای اطمینان از ایمنی سدها، کارشناسان مجبور به انتخاب سیلاب‌های با دوره بازگشت بالا، بعنوان سیلاب طراحی سرریزها هستند. سرریز قوسی، کمانی از یک دایره می‌باشد که افزایش طول مؤثر تاج سرریز را در یک عرض مشخص ممکن می‌سازد و بدین ترتیب می‌توان به ازای یک بار هیدرولیکی یکسان، دبی بیشتری را از سرریز عبور داد. در این مقاله، ضریب آبگذری و دبی عبوری سرریز قوسی قرار گرفته در داخل مخزن بصورت آزمایشگاهی مورد بررسی قرار گرفته است. ضریب آبگذری این سرریزها بعنوان تابعی از H0/P و θ ارائه و عملکرد هیدرولیکی این سرریزها با سرریز خطی مقایسه شده است. نتایج نشان می‌دهد که به ازای بار هیدرولیکی یکسان، افزایش θ منجر به کاهش ضریب آبگذری می‌گردد. با این حال افزایش طول موثر سرریز در نتیجه قوسی کردن آن، می‌تواند بهبود راندمان سرریزهای قوسی را تا حدود 45% در پی داشته باشد. با افزایش بار هیدرولیکی، ارتفاع پشته جریان در پایین‌دست سرریزهای قوسی، افزایش یافته که این امر کاهش راندمان سرریزهای قوسی را در پی دارد. در انتهای مقاله بر اساس نتایج و محدودیت‌های تحقیق حاضر، روشی برای طراحی سرریزهای قوسی قرار گرفته در داخل مخزن ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Investigation of the Hydraulic Performance of Arced Weirs

نویسندگان English

yousef sangsefidi 1
mojtaba Mehraein 2
masoud ghodsian 3
1 Tarbiat Modares University
2 kharazmi University
3 Tarbiat Modares University
چکیده English

Weirs possess an essential role in dam safety and should spill floods with high return period. The designers can enhance the width of the weirs to increase the discharge capacity. But this has sometomes topography and economic limitations. Arced weirs can be considered as an alternative. A arced weir is a arcuate of a circle in plan-view that provides an increase in crest length for a given channel width that increas the flow capacity for the same head. Also when modification and capacity increase in existing spillways are necessary, this structure is recommended. In this paper, the hydraulic performance of arced weirs located in a reservoir has been studied experimentally. Firstly, dimensionless parameters affecting the performance of arced weirs is introduced using Buckingham π theorem. Then effect of arc angle (θ) and head water ratio (H0/P) on hydraulic performance of arced weirs was experimentally investigated and hydraulic performance of the tested arced weir geometries was compared with a linear configuration. For this purpose, Arches with different radius of curvature from linear to semi-circular configurations ( ) and various head water ratio Were studied. To simulate reservoir conditions, a reservoir simulator was designed and built. Laboratory observations show that the converging of flow over a arced weir causes a locally bulge in the downstream of the weir. This phenomenon was named as flow mound. Results show that arc angle (θ) and head water ratio (H0/P) have a direct effect on the flow mound and an increase in each of them leads to mound height rise. The head-discharge relationship for arced weirs was determined by using a general form of the rectangular weir equation. Data from physical models were used to determine discharge and upstream head for the flat crested weirs installed in the reservoir. from discharge curves, it was found that with increasing angle of weir, that provide an increase in crest length for a given channel width, flow capacity increases for a given upstream head. Discharge coefficients as a function of H0/P for arced weirs are also presented and is compared with linear configuration. The results show that with increasing H0/P, discharge coefficient is declined for each tested configuration. Also with increasingθ , that leads to greater convergence of flow passing over the weirs, discharge coefficient decreases. Efficiency parameter is defined as the ratio of discharge of arced weir to that of liner weir with a same width. From efficiency curves it can be understood that the semi-circular weir can improve efficiency up to about 45%. However for all tested weirs , efficiency decreases with increasing H0/P and it gets close to 1. Finally, based on the results and limitations of this study, a methodology for the design of arced weirs located in the reservoir is presented. By using this method, the geometric parameters if an arced weir that is able to pass a certain flow rate for a given hydraulic head, will be determined.

کلیدواژه‌ها English

Dam
arced weir
head water ratio
discharge
Discharge coefficient
Ramamurthy, A. S; Bidya S. P; and Subramanya, K; “Discharge measurement structures”. American Society of Civil Engineering, Journal of the Hydraulics Division, Vol. 103, No. 12, 1977, pp: 1431-1441.
[2] Eli, R. N; “V-notch weir calibration using new parameters”. American Society of Civil Engineering, Journal of the Hydraulics Division, Vol. 103, No. 12, 1986, pp: 321-325.
[3] Bos, M. G; “Discharge measurement structures”. International Institute For Land Reclamation and Improvement, Wagemingen, the Netherlands, 1976.
[4] Balachandar, R; and Ramamurthy, A. S; “A note on circular sharp-crested weirs”. Journal of civil Engineering, Vol. 18, No. 5, 1991, pp: 881-885.
[5] Vischer, D; “Recent developments in spillway design”. Journal of Water Power and Dam Construction, Vol. 40, No. 1, 1988, pp: 10-15.
[6] Hanger, W. H; and Schwalt, “Broad-crested weir”. American Society of Civil Engineering, Journal of the Hydraulics Division, Vol. 120, No. 2, 1994, pp: 13-27.
[7] French, R. H; “Open channel hydraulic”. McGrow-Hill book Co., New York, 1986.
[8] Villemonte J. R; “Submerged weir discharge studies” Engineering News Record, Vol. 139, No. 26, 1947, pp: 54-56.
[9] Wu, S; and Rajaratnam, N; “Submerged flow regimes of rectangular sharp-crested weirs”. American Society of Civil Engineering, Journal of Hydraulic Engineering, Vol. 122, No. 7, 1996, pp: 412-414.
[10] Rehbock, T; Discussion of “Precise Weir measurements” by Schoder, E. W; and Turner K. B; Transactions of the American Society of Civil Engineers, Vol. 93, No. 1, 1929, pp: 999-1110.
[11] Kandaswamy, P. K; and Rouse, H; “Characteristics of flow over terminal weirs and sills”. American Society of Civil Engineering, Journal of the Hydraulics Division, Vol. 83, No. 4, 1957, pp: 1-13.
[12] Kindsvater, C. E; and Carter, R. W; “Discharge characteristics of rectangular thin plate weirs”. American Society of Civil Engineering, Journal of the Hydraulics Division, Vol. 33, No. 6, 1957, pp: 1-36.
[13] Swamee, K. P; “Generalized rectangular weir equation”. American Society of Civil Engineering, Journal of the Hydraulic Engineering, Vol. 114, No. 8, 1988, pp: 945-949.
[14] Aydin, I. “Flow Measurement and Instruction”. Journal of Hydraulic Research, 2011, pp: 144-151.
[15] Sarginson, E. j; “The influence of surface tension on weir flow”. Journal of Hydraulic Research, Vol. 4, No. 10, 1972, pp: 431-446.
[16] RangaRaju, K. G; and Asawa, G. L; “Viscosity and surface tension effects on weir flow”. American Society of Civil Engineering, Journal of the Hydraulics Division, Vol. 103, No. 10, 1977, pp: 1227-1231.
[17] Gill, M. A; “Flow measurement by triangular broad-crested weir”. Journal of Water Power and Dam Construction, 1985, pp: 47-49.
[18] Ghodsian, M; “Viscosity and surface tension effects on rectangular weir flow”. International Journal of Engineering Science, Iran University of Science & Technology. Vol. 9, No. 4, 1988, pp: 111-117.
[19] Henderson, F. M; “Open channel flow” Macmillan publishing Co., New York, 1996.
[20] ASCE; “Hydraulic modeling: Concepts and practice”. Manual 97, American Society of Civil Engineering, Reston, Va, United States, 2000.
[21] Borghei, S. M; Vatannia, Z; Ghodsian, M; and Jalili, M. R; “Oblique rectangular sharp-crested weir”. Proceedings of the Institution of Civil Engineering (ICE),Water and Maritime Engineering, Vol. 156, 2003, pp: 185 –191.
[22] Crookston, B. M; and Tullis, B. P; “Arced Labyrinth Weirs”. American Society of Civil Engineering, Journal of Hydraulic Engineering, Vol. 138, No. 6, 2012, pp: 555-562.
[23] Crookston, B. M; and Tullis, B. P; “Discharge Efficiency of Reservoir-Application-Specific Labyrinth Weirs”. American Society of Civil Engineering, Journal of Hydraulic Engineering, Vol. 138, No. 6, 2012, pp: 564-568.
[24] Chapra, C. S; and Canale, P. R; “ Numerical Methods for Engineers”. McGraw-Hill, 6th Edition, 2010.