شبیه سازی حلقه های پسماند نیرو- تغییرمکان جانبی در جداسازهای الیافی با درنظرگرفتن اثر مولینز

نویسندگان
1 استادیار گروه مهندسی عمران، دانشگاه رازی
2 دانشجوی کارشناسی ارشد
چکیده
در این مقاله به اجمال جداسازهای لرزه‌ای الاستومری مسلح به الیاف (یا به اختصار جداسازهای الیافی) معرفی شده‌اند. با توجه به شرایط مرزی در سطوح تماس، جداسازهای الیافی در دو کاربری متصل (سطوح تماس دارای اتصال مکانیکی با تکیه‌گاه‌های جداساز) و غیر متصل (سطوح تماس بدون اتصال مکانیکی با تکیه‌گاه‌های جداساز) قابل استفاده می باشند. هدف اصلی این مقاله شبیه سازی حلقه‌های پسماند نیرو- جابجایی جانبی جداسازهای الیافی غیر متصل می‌‌باشد. شاخصه اصلی در رفتار جانبی جداسازهای مذکور وجود سخت‌شدگی ثانویه پس از نرم‌شدگی تدریجی اولیه جداساز می‌‌باشد. مضافاً با توجه به اثر مولینز، مشخصات مکانیکی جداساز در سیکل-های اول جابجایی‌های هم‌دامنه متفاوت از سایر سیکل‌های جابجایی است. از این‌رو نسخه اصلاح شده‌ای از مدل بوک- ون برای شبیه سازی رفتار جانبی جداسازهای مورد نظر با توجه به ویژگی رفتاری خاص آنها ارائه شده است. مقایسه حلقه‌های پسماند آزمایشگاهی و حلقه‌های شبیه سازی شده نشانگر دقت مناسب نسخه ارائه ‌شده مدل بوک- ون در شبیه‌ سازی رفتار تاریخچه زمانی نیرو- تغییر مکان جانبی جداسازهای لرزه‌ای مورد نظر می‌‌باشد.

کلیدواژه‌ها


عنوان مقاله English

The Simulation of Mullins’ Effect in Load-Displacement Hysteresis Loops of Fiber-Reinforced Elastomeric lsolators

نویسنده English

Hamid Toopchi-Nezhad 1
1 Assistant Professor, Dept. of Civil Eng., Razi Univ.
چکیده English

This paper briefly reviews Fiber Reinforced Elastomeric Isolators (FREIs) as a relatively new type of elastomeric bearings. In comparison with conventional Steel Reinforced Elastomeric Isolators (SREIs) that are reinforced with steel plates, FREIs utilize fiber fabric layers as the reinforcement material. The fiber reinforcement is employed to prevent the lateral bulging of elastomer layers when the bearing is subjected to vertical compression. Fiber reinforced isolators are categorized in two groups, namely, “bonded-“ and “unbonded-“ FREIs, depending on the boundary conditions at top and bottom surfaces of the bearing. The main objective of this paper is to simulate the lateral load-displacement hysteresis loops of unbonded-FREIs. In an unbonded-FREI, no bonding is provided between the bearing and its top and bottom contact supports. As such, shear forces are transferred via friction at the contact surfaces. When an unbonded-FREI is deformed laterally, portion of its contact surfaces roll off the contact supports, and the bearing exhibits a specific deformation called “rollover deformation”. As a result of rollover deformation, the effective lateral stiffness of the bearing is decreased significantly. This in turn improves the seismic isolation efficiency due to the increased base isolated period of bearing. The ultimate lateral displacement in an unbonded-FREI may achieve when the originally vertical faces of the bearing contact top and bottom supports. Lateral load-displacement response in an unbonded-FREI is characterized with a gradual softening (due to rollover deformation) that is followed by a stiffening behavior at the ultimate stage of lateral bearing displacement. Under a cyclic excitation, the response characteristics of the bearing during the first load-cycle are different than the subsequent cycles of the same load amplitude. This phenomenon that is specific to elastomeric materials is known as Mullins’ effect. In this paper an extended Bouc-Wen model is developed to simulate the lateral load-displacement hysteresis loops of unbonded-FREIs. The model captures the gradual softening and ultimate stiffening behavior in the load-displacement curve of the bearing, and addresses the Mullins’ effect in the simulation of hysteresis loops. The proposed model comprises two simultaneous coupled equations which employ six constant coefficients altogether. To determine these coefficients, the model is fitted to experimentally-evaluated load-displacement hysteresis loops of prototype bearings. The experimental loops are obtained from cyclic shear tests that are conducted on the bearing while it is subjected to constant vertical compression. In order to account for Mullins’ effect, an individual set of coefficients corresponding to unscragged loops (the first cycle of each displacement amplitude) are evaluated. The second set of coefficients is attributed to scragged response (subsequent cycles of each displacement amplitude) of the bearing. To simulate the load-displacement hysteresis loops, the proposed model switches between the first and the second set of coefficients depending on the unscragged or scragged state of the elastomer, respectively. A constraint is imposed on the model to assure its continuity when the model coefficients are alternated. Comparison between analytical and experimental results (shake-table test data) indicates that the proposed model is accurate in dynamic response simulation of the unbonded-FREIs studied in this paper.

کلیدواژه‌ها English

Fiber Reinforced Elastomeric Isolators
Hysteresis Loops
Mullins’ Effect
Bouc-Wen Model
Time history analysis